A study on stability of active layer of polymer solar cells: effect of UV–visible light with different conditions

Abstract

The objective of this study is to investigate the stability of the active layer of polymer solar cells from the effect of UV–visible light irradiation using different conditions with respect to time. The active layers were composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM), deposited on conductive glass substrates through spin coating. These samples are placed in a UV–visible light exposure chamber using different conditions (heat and water) over the specific periods of time. The samples are analyzed by UV–visible absorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transforms infrared spectroscopy (FTIR) measurements. The results indicate that after continuous exposure to UV irradiation for 72 and 120 h, the sample shows a significant decrease in absorption of the main peak. The sample shows around 25% loss in absorption (main peak) after 72 h of irradiation. The FTIR results illustrate a progressive decrease in intensities of all typical absorption peaks owing to P3HT ring scission, side chain oxidation as well as degradation of the side groups of PCBM.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 11 June 2019

    The original article was published with incorrect affiliation of Prof. Ibnelwaleed Hussein as well as the project number in the acknowledgment.

  • 11 June 2019

    The original article was published with incorrect affiliation of Prof. Ibnelwaleed Hussein as well as the project number in the acknowledgment.

References

  1. 1.

    Grossiord N, Kroon JM, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13:432–456. https://doi.org/10.1016/j.orgel.2011.11.027

    Article  CAS  Google Scholar 

  2. 2.

    Aoyama Y, Yamanari T, Murakami TN, Nagamori T, Marumoto K, Tachikawa H et al (2014) Initial photooxidation mechanism leading to reactive radical formation of polythiophene derivatives. Polym J 47:26–30. https://doi.org/10.1038/pj.2014.81

    Article  CAS  Google Scholar 

  3. 3.

    Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120:745–755. https://doi.org/10.1103/PhysRev.120.745

    Article  CAS  Google Scholar 

  4. 4.

    Stephan J, Schrader S, Brehmer L (2000) Monte Carlo simulations of charge transport in molecular solids: a modified Miller Abrahams type jump rate approach. Synth Met 111–112:353–357. https://doi.org/10.1016/S0379-6779(99)00323-9

    Article  Google Scholar 

  5. 5.

    Bässler H, Köhler A (2012) Charge transport in organic semiconductors. Top Curr Chem 312:1–65. https://doi.org/10.1007/128_2011_218

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Abdou MSA, Holdcroft S (1993) Mechanisms of photodegradation of poly(3-alkylthiophenes) in solution. Macromolecules 26:2954–2962. https://doi.org/10.1021/ma00063a047

    Article  CAS  Google Scholar 

  7. 7.

    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V (2010) Oxygen doping of P3HT:PCBM blends: influence on trap states, charge carrier mobility and solar cell performance. Org Electron 11:1693–1700. https://doi.org/10.1016/j.orgel.2010.07.016

    Article  CAS  Google Scholar 

  8. 8.

    Abdou MSA, Lu X, Xie ZW, Orfino F, Deen MJ, Holdcroft S (1995) Nature of impurities in.pi.-conjugated polymers prepared by ferric chloride and their effect on the electrical properties of metal-insulator-semiconductor structures. Chem Mater 7:631–641. https://doi.org/10.1021/cm00052a006

    Article  CAS  Google Scholar 

  9. 9.

    Manceau M, Rivaton A, Gardette J-L (2008) Involvement of singlet oxygen in the solid-state photochemistry of P3HT. Macromol Rapid Commun 29:1823–1827. https://doi.org/10.1002/marc.200800421

    Article  CAS  Google Scholar 

  10. 10.

    Pacios R, Chatten AJ, Kawano K, Durrant JR, Bradley DDC, Nelson J (2006) Effects of photo-oxidation on the performance of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]-Phenyl C61-butyric acid methyl ester solar cells. Adv Funct Mater 16:2117–2126. https://doi.org/10.1002/adfm.200500714

    Article  CAS  Google Scholar 

  11. 11.

    Manceau M, Chambon S, Rivaton A, Gardette J-L, Guillerez S, Lemaître N (2010) Effects of long-term UV–visible light irradiation in the absence of oxygen on P3HT and P3HT:PCBM blend. Sol Energy Mater Sol Cells 94:1572–1577. https://doi.org/10.1016/j.solmat.2010.03.012

    Article  CAS  Google Scholar 

  12. 12.

    Rivaton A, Chambon S, Manceau M, Gardette J-L, Lemaître N, Guillerez S (2010) Light-induced degradation of the active layer of polymer-based solar cells. Polym Degrad Stab 95:278–284. https://doi.org/10.1016/j.polymdegradstab.2009.11.021

    Article  CAS  Google Scholar 

  13. 13.

    Shamieh B, Obuchovsky S, Frey GL (2016) Spontaneous generation of interlayers in OPVs with silver cathodes: enhancing Voc and lifetime. J Mater Chem 4:1821–1828

    CAS  Google Scholar 

  14. 14.

    Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim J-S, Ramsdale CM et al (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:64203. https://doi.org/10.1103/PhysRevB.67.064203

    Article  CAS  Google Scholar 

  15. 15.

    Tournebize A, Bussière P-O, Rivaton A, Gardette J-L, Medlej H, Hiorns RC et al (2013) New insights into the mechanisms of photodegradation/stabilization of P3HT:PCBM active layers using poly(3-hexyl- d 13-thiophene). Chem Mater 25:4522–4528. https://doi.org/10.1021/cm402193y

    Article  CAS  Google Scholar 

  16. 16.

    Visoly-Fisher I, Mescheloff A, Gabay M, Bounioux C, Zeiri L, Sansotera M et al (2015) Concentrated sunlight for accelerated stability testing of organic photovoltaic materials: towards decoupling light intensity and temperature. Sol Energy Mater Sol Cells 134:99–107. https://doi.org/10.1016/j.solmat.2014.11.033

    Article  CAS  Google Scholar 

  17. 17.

    Yue G, Wu J, Xiao Y, Ye H, Lin J, Huang M (2011) Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chin Sci Bull 56:325–330. https://doi.org/10.1007/s11434-010-3080-0

    Article  CAS  Google Scholar 

  18. 18.

    Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y (2005) Absorption spectra modification in poly(3-hexylthiophene): methanofullerene blend thin films. Chem Phys Lett 411:138–143. https://doi.org/10.1016/j.cplett.2005.06.027

    Article  CAS  Google Scholar 

  19. 19.

    George Socrates (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley-VCH Verlag GmbH & Co. KGaA; nd

  20. 20.

    Madogni VI, Kounouhéwa B, Akpo A, Agbomahéna M, Hounkpatin SA, Awanou CN (2015) Comparison of degradation mechanisms in organic photovoltaic devices upon exposure to a temperate and a subequatorial climate. Chem Phys Lett 640:201–214. https://doi.org/10.1016/j.cplett.2015.09.023

    Article  CAS  Google Scholar 

  21. 21.

    Rivaton A, Gardette J (1999) Photodegradation of polyethersulfone and polysulfone. Polym Degrad Stab 66:385–403. https://doi.org/10.1016/S0141-3910(99)00092-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science and Technology Unit at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through Project # ENE2379-04 as part of the National Science, Technology and Innovation Plan. KFUPM is also acknowledged for supporting this research. The authors would like to acknowledge the Center of Research Excellence for Renewable Energy at KFUPM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khalil Harrabi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehmood, U., Harrabi, K., Hussein, I.A. et al. A study on stability of active layer of polymer solar cells: effect of UV–visible light with different conditions. Polym. Bull. 76, 525–537 (2019). https://doi.org/10.1007/s00289-018-2368-0

Download citation

Keywords

  • P3HT
  • PCBM
  • Solar cells
  • UV–visible light
  • XPS analysis
  • FTIR