Role of quaternary ammonium compound immobilized metallic graphene oxide in PMMA/PEG membrane for antibacterial, antifouling and selective gas permeability properties

Abstract

Recently, there is a high demand for development of polymeric membrane for their widespread technological applications. Polymer blends incorporation with inorganic composite particles is the most effective strategy for obtaining antifouling, antibacterial, gas and water permeable membrane materials. However, their biological and surface properties are always hindered by the inefficient interaction of filler into polymer matrix because it is distributed into the bulk membrane matrix. In this study, graphene oxide nanosheets are incorporated with metal (Ag)/metal oxide (ZnO) composite filler (MGO) followed by surface modification with quaternary cetyltrimethylammonium bromide (CTAB) to enhance non-covalent interactions between filler and poly methyl methacrylate (PMMA)/polyethylene glycol (PEG) blend membrane. The membrane was utilized for improving antifouling, antibacterial and gas permeability of membrane. Our results indicated that CTAB-modified filler (CTAB@MGO) was bonded to the polymer blend membrane without affecting the membranes’ physicochemical properties. The prepared CTAB@MGO–PMMA/PEG membrane showed excellent antibacterial property against model Escherichia coli bacteria. The antifouling activity and CTAB stability results of modified blend membrane ensured reduced bovine serum albumin adsorption and slow dissociation of surfactant molecules, respectively. The CTAB@MGO–PMMA/PEG blend membrane also showed promising gas permeability results with hydrogen (H2), nitrogen (N2) and carbon dioxide (CO2). The presented approach highlights the potential of surface modification of filler and introduces them in polymeric membrane as a simple, easy and cost-effective strategy for preparing antifouling and gas/water permeable polymeric membranes.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

References

  1. 1.

    Dong L et al (2016) Enhanced CO2 separation performance of P (PEGMA-co-DEAEMA-co-MMA) copolymer membrane through the synergistic effect of EO groups and amino groups. RSC Adv 6(65):59946–59955

    CAS  Article  Google Scholar 

  2. 2.

    Das S, Banthia A, Adhikari B (2006) Removal of chlorinated volatile organic contaminants from water by pervaporation using a novel polyurethane urea–poly (methyl methacrylate) interpenetrating network membrane. Chem Eng Sci 61(19):6454–6467

    CAS  Article  Google Scholar 

  3. 3.

    Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M (2017) Antimicrobial polymers in the nano-world. Nanomaterials 7(2):48

    Article  Google Scholar 

  4. 4.

    Munoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339

    CAS  Article  Google Scholar 

  5. 5.

    Munoz-Bonilla A, Fernandez-Garcia M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62

    CAS  Article  Google Scholar 

  6. 6.

    Sarı A et al (2010) Poly (ethylene glycol)/poly (methyl methacrylate) blends as novel form-stable phase-change materials for thermal energy storage. J Appl Polym Sci 116(2):929–933

    Google Scholar 

  7. 7.

    Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    CAS  Article  Google Scholar 

  8. 8.

    Bi H et al (2006) Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab Chip 6(6):769–775

    CAS  Article  Google Scholar 

  9. 9.

    Landis RF et al (2016) Cross-linked polymer-stabilized nanocomposites for the treatment of bacterial biofilms. ACS Nano 11(1):946–952

    Article  Google Scholar 

  10. 10.

    Yu W et al (2014) Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling. Sci Rep 4:6513

    CAS  Article  Google Scholar 

  11. 11.

    Helin H et al (2008) Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. J Environ Sci 20(5):565–570

    Article  Google Scholar 

  12. 12.

    Liu Y et al (2016) Enhanced membrane antifouling and separation performance by manipulating phase separation and surface segregation behaviors through incorporating versatile modifier. J Membr Sci 499:406–417

    CAS  Article  Google Scholar 

  13. 13.

    Huang X et al (2016) Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide. ACS Appl Mater Interfaces 8(23):14334–14338

    Article  Google Scholar 

  14. 14.

    Sharma M, Madras G, Bose S (2015) Unique nanoporous antibacterial membranes derived through crystallization induced phase separation in PVDF/PMMA blends. J Mater Chem A 3(11):5991–6003

    CAS  Article  Google Scholar 

  15. 15.

    Fang L-F et al (2017) Structures and antifouling properties of polyvinyl chloride/poly (methyl methacrylate)-graft-poly (ethylene glycol) blend membranes formed in different coagulation media. J Membr Sci 524:235–244

    CAS  Article  Google Scholar 

  16. 16.

    Hwangbo K-H, Kim Y-J, Cho KY (2012) Fabrication of protein-resistant blend based on PVDF-HFP and amphiphilic brush copolymer made from PMMA and PEGMA. Appl Surf Sci 263:291–296

    CAS  Article  Google Scholar 

  17. 17.

    Zhang R et al (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924

    CAS  Article  Google Scholar 

  18. 18.

    Ma X-Y, Zhang W-D (2009) Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab 94(7):1103–1109

    CAS  Article  Google Scholar 

  19. 19.

    Patricio P et al (2006) Effect of blend composition on microstructure, morphology, and gas permeability in PU/PMMA blends. J Membr Sci 271(1–2):177–185

    CAS  Article  Google Scholar 

  20. 20.

    Hong R, Chen Q (2014) Dispersion of inorganic nanoparticles in polymer matrices: challenges and solutions. In: Kalia S, Haldorai Y (eds) Organic–inorganic hybrid nanomaterials, vol 267. Springer, Cham, pp 1–38

    Google Scholar 

  21. 21.

    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6):3468–3517

    CAS  Article  Google Scholar 

  22. 22.

    Li Y et al (2013) Crystallization of poly (ethylene glycol) in poly (methyl methacrylate) networks. Mater Sci 19(2):147–151

    CAS  Google Scholar 

  23. 23.

    Matai I et al (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B 115:359–367

    CAS  Article  Google Scholar 

  24. 24.

    Bharadwaj S et al (2018) Graphene nano-mesh-Ag-ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chem Eng J 336:445–455

    CAS  Article  Google Scholar 

  25. 25.

    Ravichandran K et al (2016) Realizing cost-effective ZnO: Sr nanoparticles@ graphene nanospreads for improved photocatalytic and antibacterial activities. RSC Adv 6(72):67575–67585

    CAS  Article  Google Scholar 

  26. 26.

    Kavinkumar T, Manivannan S (2016) Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection. Ceram Int 42(1):1769–1776

    CAS  Article  Google Scholar 

  27. 27.

    Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4(8):3823–3851

    CAS  Article  Google Scholar 

  28. 28.

    Fu Y-J et al (2006) Zeolite-filled PMMA composite membranes: influence of surfactant addition on gas separation properties. Desalination 200(1–3):250–252

    CAS  Article  Google Scholar 

  29. 29.

    Mallakpour S, Jarang N (2018) Production of bionanocomposites based on poly (vinyl pyrrolidone) using modified TiO2 nanoparticles with citric acid and ascorbic acid and study of their physicochemical properties. Polym Bull 75(4):1441–1456

    CAS  Article  Google Scholar 

  30. 30.

    Zhang X et al (2017) Membrane biofouling control using polyvinylidene fluoride membrane blended with quaternary ammonium compound assembled on carbon material. J Membr Sci 539:229–237

    CAS  Article  Google Scholar 

  31. 31.

    He M et al (2016) Zwitterionic materials for antifouling membrane surface construction. Acta Biomater 40:142–152

    Article  Google Scholar 

  32. 32.

    Olkowska E, Polkowska Z, Namiesnik J (2011) Analytics of surfactants in the environment: problems and challenges. Chem Rev 111(9):5667–5700

    CAS  Article  Google Scholar 

  33. 33.

    Tüzüner Ş, Demir MM (2015) Dispersion of organophilic Ag nanoparticles in PS-PMMA blends. Mater Chem Phys 162:692–699

    Article  Google Scholar 

  34. 34.

    Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471

    CAS  Article  Google Scholar 

  35. 35.

    Kumar R, Kumar M, Awasthi K (2016) Functionalized Pd-decorated and aligned MWCNTs in polycarbonate as a selective membrane for hydrogen separation. Int J Hydrog Energy 41(48):23057–23066

    CAS  Article  Google Scholar 

  36. 36.

    Upadhyay S, Bagheri S, Hamid SBA (2014) Enhanced photoelectrochemical response of reduced-graphene oxide/Zn1 − xAgxO nanocomposite in visible-light region. Int J Hydrog Energy 39(21):11027–11034

    CAS  Article  Google Scholar 

  37. 37.

    Yoo D-H et al (2012) Photocatalytic performance of a Ag/ZnO/CCG multidimensional heterostructure prepared by a solution-based method. J Phys Chem C 116(12):7180–7184

    CAS  Article  Google Scholar 

  38. 38.

    Meng W et al (2015) Structure and interaction of graphene oxide–cetyltrimethylammonium bromide complexation. J Phys Chem C 119(36):21135–21140

    CAS  Article  Google Scholar 

  39. 39.

    Liu Q et al (2017) Enhanced mechanical and thermal properties of CTAB-functionalized graphene oxide–polyphenylene sulfide composites. High Perform Polym 29(8):889–898

    CAS  Article  Google Scholar 

  40. 40.

    Zhang Z, Lin M (2014) Fast loading of PEG–SH on CTAB-protected gold nanorods. RSC Adv 4(34):17760–17767

    CAS  Article  Google Scholar 

  41. 41.

    Shinzawa H, Mizukado J, Kazarian SG (2017) Fourier transform infrared (FT-IR) spectroscopic imaging analysis of partially miscible PMMA–PEG blends using two-dimensional disrelation mapping. Appl Spectrosc 71(6):1189–1197

    CAS  Article  Google Scholar 

  42. 42.

    Singh A, Chandra A (2013) Graphene and graphite oxide based composites for application in energy systems. Phys Status Solidi (b) 250(8):1483–1487

    CAS  Article  Google Scholar 

  43. 43.

    Thomas K et al (2008) Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J Opt A Pure Appl Opt 10(5):055303

    Article  Google Scholar 

  44. 44.

    Putz KW et al (2010) High-nanofiller-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater 20(19):3322–3329

    CAS  Article  Google Scholar 

  45. 45.

    Barrer R, Rideal EK (1939) Permeation, diffusion and solution of gases in organic polymers. Trans Faraday Soc 35:628–643

    CAS  Article  Google Scholar 

  46. 46.

    Gacal BN, Filiz V, Abetz V (2016) The synthesis of poly (ethylene glycol)(PEG) containing polymers via step-growth click coupling reaction for CO2 separation. Macromol Chem Phys 217(5):672–682

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Kamlendra Awasthi for gas permeation characterization of samples. We thank Dr. S Bharadwaj and Ashish Pandey for their assistance in sample preparation and SEM imaging of samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anjum Qureshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1128 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhammad, S., Siddiq, M., Niazi, J.H. et al. Role of quaternary ammonium compound immobilized metallic graphene oxide in PMMA/PEG membrane for antibacterial, antifouling and selective gas permeability properties. Polym. Bull. 75, 5695–5712 (2018). https://doi.org/10.1007/s00289-018-2356-4

Download citation

Keywords

  • Metallic graphene oxide
  • CTAB
  • Surface modification
  • Antifouling
  • Antibacterial
  • BSA adsorption
  • Gas permeability