Skip to main content
Log in

Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Classical solution-cast and ultrasonic–microwave-irradiated solution-cast methods have been used for the preparation of solid polymer electrolyte (SPE) films comprising polymer matrix of poly(ethylene oxide) and poly(methyl methacrylate) blend and lithium tetrafluoroborate (LiBF4) ionic salt. These films have been characterized by employing the X-ray diffraction, Fourier transform infrared spectroscopy, dielectric relaxation spectroscopy, and electrochemical analyser. It is observed that the temperature-dependent ionic conductivity of these predominantly amorphous solid ion–dipolar complexes is governed by their dielectric permittivity and the relaxation times of various dynamical processes. The relaxation times and the dc ionic conductivity of these electrolyte materials obey the Arrhenius behaviour, whereas the normalized ac conductivity exhibits the time–temperature superposition scaling. The influence of sample preparation methods on the performance of SPE films and the suitability of these materials for the lithium-ion batteries has been explored by noting the relative changes in their structural, dielectric, electrical, ionic conductivity, and the electrochemical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Che L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164

    Article  Google Scholar 

  2. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002

    Article  Google Scholar 

  3. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540

    Article  CAS  Google Scholar 

  4. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)–based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253

    Article  CAS  Google Scholar 

  5. Dam T, Tripathy SN, Paluch M, Jena SS, Pradhan DK (2016) Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20–LiCF3SO3–ZrO2 based polymer nano-composite electrolyte. Electrochim Acta 202:147–156

    Article  CAS  Google Scholar 

  6. Karmakar A, Ghosh A (2014) Structure and ionic conductivity of ionic liquid embedded PEO–LiCF3SO3 polymer electrolyte. AIP Adv 4:087112

    Article  Google Scholar 

  7. Das S, Ghosh A (2015) Ion conduction and relaxation in PEO–LiTFSI–Al2O3 polymer nanocomposite electrolytes. J Appl Phys 117:174103

    Article  Google Scholar 

  8. Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176

    Article  CAS  Google Scholar 

  9. Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75:765–774

    Article  CAS  Google Scholar 

  10. Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142:172–181

    Article  CAS  Google Scholar 

  11. Sengwa RJ, Choudhary S (2014) Dielectric relaxation spectroscopy and X–ray diffraction studies of poly(ethylene oxide)–lithium perchlorate electrolytes. Indian J Phys 88:461–470

    Article  CAS  Google Scholar 

  12. Polu AR, Rhee H-W, Kim DK (2015) New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci: Mater Electron 26:8548–8554

    CAS  Google Scholar 

  13. Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228

    Article  CAS  Google Scholar 

  14. Choudhary S, Sengwa RJ (2012) Effects of different anions of lithium salt and MMT nanofiller on ion conduction in melt compounded PEO–LiX–MMT electrolytes. Ionics 18:379–384

    Article  CAS  Google Scholar 

  15. Deka M, Kumar A (2013) Dielectric and conductivity studies of 90 MeV O7+ ion irradiated poly(ethylene oxide)/montmorillonite based ion conductor. J Solid State Electrochem 17:977–986

    Article  CAS  Google Scholar 

  16. Pradhan DK, Karan NK, Thomas R, Katiyar RS (2014) Coupling of conductivity to the relaxation process in polymer electrolytes. Mater Chem Phys 147:1016–1021

    Article  CAS  Google Scholar 

  17. Pal P, Ghosh A (2017) Charge carrier dynamics in PMMA–LiClO4 based polymer electrolytes plasticized with different plasticizers. J Appl Phys 122:015101

    Article  Google Scholar 

  18. Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA–LiClO4. Ionics 15:357–367

    Article  CAS  Google Scholar 

  19. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA–LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167

    Article  CAS  Google Scholar 

  20. Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 16:255–262

    Article  CAS  Google Scholar 

  21. Liu J, Sakai VG, Maranas JK (2006) Composition dependence of segmental dynamics of poly(methyl methacrylate) in miscible blends with poly(ethylene oxide). Macromolecules 39:2866–2874

    Article  CAS  Google Scholar 

  22. Chen C, Maranas JK (2009) A molecular view of dynamic responses when mixing poly(ethylene oxide) and poly(methyl methacrylate). Macromolecules 42:2795–2805

    Article  CAS  Google Scholar 

  23. Shi W, Han CC (2012) Dynamic competition between crystallization and phase separation at the growth interface of a PMMA/PEO blend. Macromolecules 45:336–346

    Article  CAS  Google Scholar 

  24. Karim SRA, Sim LH, Chan CH, Ramli H (2015) On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol Symp 354:374–383

    Article  Google Scholar 

  25. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO–PMMA polymer composite electrolytes doped with nano–Al2O3. Electrochim Acta 169:334–341

    Article  CAS  Google Scholar 

  26. Ghellichi M, Qazvini NT, Jafari SH, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874

    Article  Google Scholar 

  27. Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24:135

    Article  Google Scholar 

  28. Dhatarwal P, Sengwa RJ, Choudhary S (2017) Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Comp Comm 5:1–7

    Article  Google Scholar 

  29. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370

    Article  CAS  Google Scholar 

  30. Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend–based nanocomposite electrolytes. J Appl Polym Sci 132:41311

    Google Scholar 

  31. Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influences of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3x wt% MMT nanocomposite electrolytes. Ionics 21:95–109

    Article  CAS  Google Scholar 

  32. Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143

    Article  Google Scholar 

  33. Dhatarwal P, Sengwa RJ (2017) Effects of PEG plasticizer concentrations and film preparation methods on the structural, dielectric and electrical properties of PEO–PMMA blend based plasticized solid polymer electrolyte films. Indian J Pure Appl Phys 55:7–18

    Google Scholar 

  34. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941

    Article  CAS  Google Scholar 

  35. Choudhary S, Sengwa RJ (2014) Intercalated clay structures and amorphous behaviour of solution cast and melt pressed poly(ethylene oxide)–clay nanocomposites. J Appl Polym Sci 131:39898

    Article  Google Scholar 

  36. Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186

    Article  CAS  Google Scholar 

  37. Naveen Kumar K, Saijyothi K, Vijayalakshmi L, Kang M (2017) Copper–constantan nanoparticles impregnated PEO + PVP:Li+ blended solid polymer electrolyte films for lithium battery applications. Polym Bull 74:2545–2564

    Article  CAS  Google Scholar 

  38. Arunkumar R, Babu RS, Rani MU, Rajendran S (2017) Influence of plasticizer on ionic conductivity of PVC–PBMA polymer electrolytes. Ionics 23:3097–3109

    Article  CAS  Google Scholar 

  39. Das S, Ghosh A (2016) Ionic relaxation in PEO/PVdF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration. J Phys D Appl Phys 49:235601

    Article  Google Scholar 

  40. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  41. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78:639–648

    Article  CAS  Google Scholar 

  42. Rozik NN, Ward AA (2018) A novel approach on poly(ionic liquid)-based poly(vinyl alcohol) as a hydrophilic/hydrophobic conductive polymer electrolytes. Polym Bull 75:267–287

    Article  CAS  Google Scholar 

  43. Sownthari K, Suthanthiraraj SA (2015) Influence of Al2O3 nanofiller on the properties of polymer electrolyte based on poly-ε-caprolactone. Polym Bull 72:61–73

    Article  CAS  Google Scholar 

  44. Basha SKS, Sundari GS, Kumar KV, Rao MC (2018) Preparation and dielectric properties of PVP-based polymer electrolytes films for solid-state battery applications. Polym Bull 75:925–945

    Article  CAS  Google Scholar 

  45. Liu Y, Lee JY, Hong L (2002) Functionalized SiO2 in poly(ethylene oxide)–based polymer electrolytes. J Power Sources 109:507–514

    Article  CAS  Google Scholar 

  46. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of In Situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822

    Article  CAS  Google Scholar 

  47. Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly (methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96:406–410

    Article  CAS  Google Scholar 

  48. Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed type polymer nanocomposite films. J Phys D Appl Phys 51:045504

    Article  Google Scholar 

  49. Prabakaran P, Manimuthu RP (2016) Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes. Ionics 22:827–839

    Article  CAS  Google Scholar 

  50. Kumar Y, Hashmi SA, Pandey GP (2011) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201:73–80

    Article  CAS  Google Scholar 

  51. Mohapatra SR, Thakur AK, Choudhary RNP (2011) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage. J Power Sources 191:601–613

    Article  Google Scholar 

  52. Pandey GP, Hashmi SA (2013) Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources 243:211–218

    Article  CAS  Google Scholar 

  53. Chandra A (2013) Synthesis and ion transport characterization of hot-pressed Ag+ ion conducting glass-polymer electrolytes. Indian J Phys 87:643–649

    Article  CAS  Google Scholar 

  54. Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501

    Article  CAS  Google Scholar 

  55. Rocco AM, Pereira RP (2015) Solid electrolytes based on poly (ethylene oxide)/poly (4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ionics 279:78–89

    Article  CAS  Google Scholar 

  56. Sohaimy MIH, Isa MIN (2017) Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate. Polym Bull 74:1371–1386

    Article  CAS  Google Scholar 

  57. Arya A, Sadiq M, Sharma AL (2017) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics. https://doi.org/10.1007/s11581-017-2364-7

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (RJS) gratefully acknowledges the financial support received from the Department of Science and Technology (DST), New Delhi, through the research projects Nos. SR/S2/CMP-09/2002, SR/S2/CMP-0072/2010, and the DST–FIST program project No. SR/FST/PSI-134/2008 and also from the RUSA grant No. F30(16)SPD/RUSA/2016/218 for setting the facility of the electrochemical analyser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhatarwal, P., Sengwa, R.J. Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications. Polym. Bull. 75, 5645–5666 (2018). https://doi.org/10.1007/s00289-018-2354-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2354-6

Keywords

Navigation