Skip to main content
Log in

Benzodithiophene homopolymers via direct (hetero)arylation polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript


Direct (hetero)arylation polymerization (DHAP) of a monobrominated benzo[1,2-b:4,5-b′]dithiophene monomer using the Herrmann–Beller catalyst with a tertiary phosphine provided benzodithiophene homopolymers in good yields. Employing both P(o-OMePh)3 and P(o-NMe2Ph)3 as the phosphine ligands gave well-defined polymers—with the later phosphine providing a higher molecular weight polymer. The preparation of a benzodithiophene (BDT) trimer was used to assist in the assignment of the 1H NMR spectra of the synthesized polymers which show largely defect-free couplings. The optical spectra of polymers formed via DHAP and those prepared using traditional Stille couplings are essentially identical, which further confirms the presence of well-defined BDT–BDT couplings along the conjugated polymer chain. These results confirm that carboxylic acid additives are not always necessary to suppress defects in DHAP polymerizations and that DHAP is a viable alternative to traditional Stille coupling for the preparation of benzodithiophene homopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others


  1. Sista P, Biewer MC, Stefan MC (2012) Benzo[1,2-b:4,5-b′]dithiophene building block for the synthesis of semiconducting polymers. Macromol Rapid Commun 33:9–20

    Article  CAS  Google Scholar 

  2. Huo L, Hou J (2011) Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polym Chem 2:2453–2461

    Article  CAS  Google Scholar 

  3. Lu M, Wang W, Liang L, Yan S, Ling Q (2017) Synthesis of D–A low-bandgap polymer-based thieno[3,4-b]pyrazine and benzo[1,2-b:4,5-b′]dithiophene for polymer solar cells. Polym Bull 74:603–614

    Article  CAS  Google Scholar 

  4. Kranthiraja K, Park SH, Cho W, Park WT, Noh YY, Jin SH, Lee JW (2016) New bulky side chain substituted benzodithiophene based 2D-conjugated polymers for optoelectronic applications. Polym Bull 73:2567–2581

    Article  CAS  Google Scholar 

  5. Liu W, Qiu L, Tang W, Jiang L, Peng H, Chen G, Xiao X, Zou Y (2016) Synthesis and characterization of 5,6-bis(n-octyloxy)[1–3] selenadiazole-based polymers for photovoltaic applications. Polym Bull 73:385–398

    Article  CAS  Google Scholar 

  6. Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J (2016) Molecular design of benzodithiophene-based organic photovoltaic materials. Chem Rev 116:7397–7457

    Article  CAS  Google Scholar 

  7. Pai RK, Ahipa TN, Hemavathi B (2016) Rational design of benzodithiophene based conjugated polymers for better solar cell performance. RSC Adv 6:23760–23774

    Article  CAS  Google Scholar 

  8. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739

    Article  CAS  Google Scholar 

  9. Hou J, Park MH, Zhang S, Yao Y, Chen LM, Li JH, Yang Y (2008) Bandgap and Molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules 41:6012–6018

    Article  CAS  Google Scholar 

  10. Lee D, Hubijar E, Kalaw GJD, Ferraris JP (2012) Enhanced and tunable open-circuit voltage using dialkylthio benzo[1,2-b:4,5-b′]dithiophene in polymer solar cells. Chem Mater 24:2534–2540

    Article  CAS  Google Scholar 

  11. Kang TE, Kim T, Wang C, Yoo S, Kim BJ (2015) Poly(benzodithiophene) Homopolymer for high-performance polymer solar cells with open-circuit voltage of near 1 V: a superior candidate to substitute for poly(3-hexylthiophene) as wide bandgap polymer. Chem Mater 27:2653–2658

    Article  CAS  Google Scholar 

  12. Mulligan CJ, Bilen C, Zhou X, Belcher WJ, Dastoor PC (2015) Levelised cost of electricity for organic photovoltaics. Sol Energ Mater Sol Cells 133:26–31

    Article  CAS  Google Scholar 

  13. Sista P, Nguyen H, Murphy JW, Hao J, Dei DK, Palaniappan K, Servello J, Kularatne RS, Gnade BE, Xue B, Dastoor PC, Biewer MC, Stefan MC (2010) Synthesis and electronic properties of semiconducting polymers containing benzodithiophene with alkyl phenylethynyl substituents. Macromolecules 43:8063–8070

    Article  CAS  Google Scholar 

  14. Lee D, Stone SW, Ferrais JP (2011) A novel dialkylthio benzo[1,2-b:4,5-b′]dithiophene derivative for high open-circuit voltage in polymer solar cells. Chem Commun 47:10987–10989

    Article  CAS  Google Scholar 

  15. Hundt N, Palaniappan K, Servello J, Dei DK, Stefan MC, Biewer MC (2009) Polymers containing rigid benzodithiophene repeating unit with extended electron delocalization. Org Lett 11:4422–4425

    Article  CAS  Google Scholar 

  16. Yu S, Liu F, Yu J, Zhang S, Cabanetos C, Gao Y, Huang W (2017) Eco-friendly direct (hetero)-arylation polymerization: scope and limitation. J Mater Chem C 5:29–40

    Article  CAS  Google Scholar 

  17. Pouliot JR, Grenier F, Blaskovits JT, Beaupre S, Leclerc M (2016) Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem Rev 116:14225–14274

    Article  CAS  Google Scholar 

  18. Bura T, Blaskovits JT, Leclerc M (2016) Direct (hetero)arylation polymerization: trends and perspectives. J Am Chem Soc 138:10056–10071

    Article  CAS  Google Scholar 

  19. Suraru SL, Lee JA, Luscombe CK (2016) C–H arylation in the synthesis of π-conjugated polymers. ACS Macro Lett 5:724–729

    Article  CAS  Google Scholar 

  20. Hassan J, Schulz E, Gozzi C, Lemaire M (2003) Palladium-catalyzed synthesis of oligo(alkylthiophenes). J Mol Catal A Chem 195:125–131

    Article  CAS  Google Scholar 

  21. Wang Q, Takita R, Kikuzaki Y, Ozawa F (2010) Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J Am Chem Soc 132:11420–11421

    Article  CAS  Google Scholar 

  22. Rudenko AE, Thompson BC (2015) Influence of the carboxylic acid additive structure on the properties of poly(3-hexylthiophene) prepared via direct arylation polymerization (DArP). Macromolecules 48:569–575

    Article  CAS  Google Scholar 

  23. Saito H, Chen J, Kuwabara J, Yasuda T, Kanbara T (2017) Facile one-pot access to π-conjugated polymers via sequential bromination/direct arylation polycondensation. Polym Chem 8:3006–3012

    Article  CAS  Google Scholar 

  24. Senkul S, Tas R, Sonmezoglu S, Can M (2012) The chemical and physical characterizations of aniline-co-3-methyl thiophene copolymer synthesized by a new oxidant. Int J Polym Anal Charact 17:257–267

    Article  CAS  Google Scholar 

  25. Bura T, Morin PO, Leclerc M (2015) En route to defect-free polythiophene derivatives by direct heteroarylation polymerization. Macromolecules 48:5614–5620

    Article  CAS  Google Scholar 

  26. Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ (2016) Tin-free direct C–H arylation polymerization for high photovoltaic efficiency conjugated polymers. J Am Chem Soc 138:15699–15709

    Article  CAS  Google Scholar 

  27. Wakioka M, Kitano Y, Ozawa F (2013) A highly efficient catalytic system for polycondensation of 2,7-dibromo-9,9-dioctylfluorene and 1,2,4,5-tetrafluorobenzene via direct arylation. Macromolecules 46:370–374

    Article  CAS  Google Scholar 

  28. Wong M, Hollinger J, Kozycz LM, McCormick TM, Lu Y, Burns DC, Seferos DS (2012) An apparent size-exclusion quantification limit reveals a molecular weight limit in the synthesis of externally initiated polythiophenes. ACS Macro Lett 1:1266–1269

    Article  CAS  Google Scholar 

Download references


T.M.P. acknowledges the following: (1) University of Minnesota, Morris (UMM) Faculty Research Enhancement Funds supported by the University of Minnesota Office of the Vice President for Research and the UMM Division of Science and Mathematics for financial assistance, (2) The Supercomputing Institute of the University of Minnesota, (3) Seth C. Rasmussen for helpful suggestions and insight, and (4) Diane Hopkins Whelan for administrative support. T.M.P., A.J.H. and W.D.W. acknowledge the Howard Hughes Medical Institute (HHMI) Pathways to Science Program for financial assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ted M. Pappenfus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicha, C.L., Gockel, S.N., Helmin, A.J. et al. Benzodithiophene homopolymers via direct (hetero)arylation polymerization. Polym. Bull. 75, 5667–5675 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: