Semi-aromatic polyamide-based nanocomposites: I. in-situ polymerization in the presence of graphene oxide

  • Mahboobeh Yousefian-Arani
  • Alireza Sharif
  • Ahmad Reza Bahramian
Original Paper
  • 25 Downloads

Abstract

In-situ interfacial polymerization method was employed to synthesize nanocomposites based on a semi-aromatic polyamide (PA) and pristine or sulfonated graphene oxides (GO or SGO, respectively). The PA chains were produced at the interface of a nonaqueous solution of isophthaloyl dichloride and an aqueous triethylenetetramine solution containing different amounts of GO or SGO dispersed nanosheets. The effects of SGO and pristine GO on the structure, thermal stability and dynamic mechanical and electrical properties of PA were studied. Favorable interfacial interactions between SGO and PA were confirmed using Fourier transform infrared spectroscopy and X-ray diffractometry. Consequently, SGO significantly increased the thermal stability and char residues of PA. Furthermore, adding both pristine and sulfonated GO nanosheets led to an enhancement in storage modulus and a shift in glass transition temperature of the polyamide. Finally, the facile sulfonation of GO resulted in partial reduction of the electrically insulating nanosheets and hence the electrical conductivity and dielectric constant of PA were increased by 10 and 3 times, respectively, at SGO content of 1.0 wt%.

Keywords

Nanocomposite Graphene oxide Interfacial polymerization Semi-aromatic polyamide 

Notes

Acknowledgements

Partial financial support from the Iranian Nano-technology Initiative is gratefully appreciated. The authors also wish to thank Dr. S. M. R. Paran for his assistance in preparing samples for DMTA experiments.

References

  1. 1.
    Ayala V, Maya EM, García JM, De La Campa JG, Lozano AE, De Abajo J (2005) Synthesis, characterization, and water sorption properties of new aromatic polyamides containing benzimidazole and ethylene oxide moieties. J Polym Sci A 43(1):112–121CrossRefGoogle Scholar
  2. 2.
    Liu S, Luo G, Wei F (2015) Poly (p-phenylene terephthalamide)/carbon nanotube composite membrane: preparation via polyanion solution method and mechanical property enhancement. Compos Sci Technol 118:135–140CrossRefGoogle Scholar
  3. 3.
    Soulestin J, Rashmi BJ, Bourbigot S, Lacrampe MF, Krawczak P (2012) Mechanical and optical properties of polyamide 6/clay nanocomposite cast films: influence of the degree of exfoliation. Macromol Mater Eng 297(5):444–454CrossRefGoogle Scholar
  4. 4.
    Dinari M, Mohammadnezhad G, Nabiyan A (2016) Preparation and characterization of nanocomposite materials based on polyamide-6 and modified ordered mesoporous silica KIT-6. J Appl Polym Sci 133(10):43098CrossRefGoogle Scholar
  5. 5.
    Shabanian M, Kang NJ, Wang DY, Wagenknecht U, Heinrich G (2013) Synthesis, characterization and properties of novel aliphatic–aromatic polyamide/functional carbon nanotube nanocomposites via in situ polymerization. RSC Adv 3(43):20738–20745CrossRefGoogle Scholar
  6. 6.
    Shabanian M, Faghihi K, Raeisi A, Hajibeygi M (2015) Novel nanocomposite based on reactive organoclay and photosensitive aliphatic–aromatic polyamide: synthesis and characterization. Polym Compos 36(8):1502–1509CrossRefGoogle Scholar
  7. 7.
    Zulfiqar S, Kausar A, Rizwan M, Sarwar MI (2008) Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Appl Surf Sci 255(5):2080–2086CrossRefGoogle Scholar
  8. 8.
    Zulfiqar S, Sarwar MI (2009) Investigating the structure–property relationship of aromatic–aliphatic polyamide/layered silicate hybrid films. Solid State Sci 11(7):1246–1251CrossRefGoogle Scholar
  9. 9.
    Shabanian M, Basaki N, Khonakdar HA, Kianipour S, Wagenknecht U (2014) Synthesis and properties of new polyamide/multiwalled carbon nanotube nanocomposites containing a pyridine group. Polym Int 63(9):1658–1664CrossRefGoogle Scholar
  10. 10.
    Zulfiqar S, Ishaq M, Ilyas Sarwar M (2010) Synthesis and characterization of soluble aromatic–aliphatic polyamide. Adv Polym Technol 29(4):300–308CrossRefGoogle Scholar
  11. 11.
    Li Q, Yu H, Wu F, Song J, Pan X, Zhang M (2016) Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability. Appl Surf Sci 363:338–345CrossRefGoogle Scholar
  12. 12.
    Gao Y, Hu M, Mi B (2014) Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. J Membr Sci 455:349–356CrossRefGoogle Scholar
  13. 13.
    Chang YW, Lee K, Lee YW, Bang JH (2015) Poly (ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior. Polym Bull 72(8):1937–1948CrossRefGoogle Scholar
  14. 14.
    Song L, Lu S, Xiao X, Qi B, He Z, Xu X et al (2017) Enhanced thermal and mechanical properties of liquid crystalline-grafted graphene oxide-filled epoxy composites. Polym Bull 74(5):1611–1627CrossRefGoogle Scholar
  15. 15.
    Lago E, Toth PS, Pugliese G, Pellegrini V, Bonaccorso F (2016) Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Adv 6(100):97931–97940CrossRefGoogle Scholar
  16. 16.
    Cai Z, Meng X, Han Y, Ye H, Cui L, Zhou Q (2015) Reinforcing polyamide 1212 with graphene oxide via a two-step melt compounding process. Compos A Appl Sci Manuf 69:115–123CrossRefGoogle Scholar
  17. 17.
    Sharif A, Koolivand H, Khanbabaie G, Hemmati M, Aalaie J, Kashani MR, Gheshlaghi A (2012) Improvement of CO2/CH4 separation characteristics of polyethersulfone by modifying with polydimethylsiloxane and nano-silica. J Polym Res 19(7):9916CrossRefGoogle Scholar
  18. 18.
    Shirdast A, Sharif A, Abdollahi M (2016) Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. J Power Sources 306:541–551CrossRefGoogle Scholar
  19. 19.
    Zhao J, Wang Z, Wang J, Wang S (2006) Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. J Membr Sci 283(1):346–356CrossRefGoogle Scholar
  20. 20.
    Alvi MU, Zulfiqar S, Yavuz CT, Kweon HS, Sarwar MI (2014) Nanostructure and mechanical properties of aromatic polyamide and reactive organoclay nanocomposites. Mater Chem Phys 147(3):636–643CrossRefGoogle Scholar
  21. 21.
    Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2(6):1707–1713CrossRefGoogle Scholar
  22. 22.
    Zheng D, Tang G, Zhang HB, Yu ZZ, Yavari F, Koratkar N et al (2012) In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Compos Sci Technol 72(2):284–289CrossRefGoogle Scholar
  23. 23.
    Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584CrossRefGoogle Scholar
  24. 24.
    Lee J, Yun YS, Kim B, Cho SY, Jin HJ (2014) Nylon 610/graphene oxide composites prepared by in-situ interfacial polymerization. J Nanosci Nanotechnol 14(8):5703–5707CrossRefGoogle Scholar
  25. 25.
    O’Neill A, Archer E, McIlhagger A, Lemoine P, Dixon D (2017) Polymer nanocomposites: in situ polymerization of polyamide 6 in the presence of graphene oxide. Polym Compos 38(3):528–537CrossRefGoogle Scholar
  26. 26.
    Tseng CY, Ye YS, Cheng MY, Kao KY, Shen WC, Rick J et al (2011) Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. Adv Energy Mater 1(6):1220–1224CrossRefGoogle Scholar
  27. 27.
    Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl Mater Interfaces 2(12):3702–3708CrossRefGoogle Scholar
  28. 28.
    Tseng I, Chang JC, Huang SL, Tsai MH (2013) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62(5):827–8355CrossRefGoogle Scholar
  29. 29.
    Sandoval S, Kumar N, Oro-Solé J, Sundaresan A, Rao CNR, Fuertes A, Tobias G (2016) Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide. Carbon 96:594–602CrossRefGoogle Scholar
  30. 30.
    Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5(41):32880–32890CrossRefGoogle Scholar
  31. 31.
    Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules 8(6):909–915CrossRefGoogle Scholar
  32. 32.
    Tang L, Qiu Z (2016) Effect of poly (ethylene glycol)-polyhedral oligomeric silsesquioxanes on the crystallization kinetics and morphology of biodegradable poly (ethylene succinate). Polym Degrad Stab 134:97–104CrossRefGoogle Scholar
  33. 33.
    Wan T, Du T, Wang B, Zeng W, Clifford M (2012) Microstructure, crystallization and dynamic mechanical properties of polyamide/clay nanocomposites after melt-state annealing. Polym Compos 33(12):2271–2276CrossRefGoogle Scholar
  34. 34.
    Sender C, Dantras E, Dantras-Laffont L, Lacoste MH, Dandurand J, Mauzac M et al (2007) Dynamic mechanical properties of a biomimetic hydroxyapatite/polyamide 6, 9 nanocomposite. J Biomed Mater Res B Appl Biomater 83(2):628–635CrossRefGoogle Scholar
  35. 35.
    Tseng I, Chang JC, Huang SL, Tsai MH (2013) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62(5):827–835CrossRefGoogle Scholar
  36. 36.
    Thomassin JM, Trifkovic M, Alkarmo W, Detrembleur C, Jérôme C, Macosko C (2014) Poly (methyl methacrylate)/graphene oxide nanocomposites by a precipitation polymerization process and their dielectric and rheological characterization. Macromolecules 47(6):2149–2155CrossRefGoogle Scholar
  37. 37.
    Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22(14):7010–7019CrossRefGoogle Scholar
  38. 38.
    Nan CW, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151CrossRefGoogle Scholar
  39. 39.
    Wu W, Wan C, Wang S, Zhang Y (2013) Physical properties and crystallization behavior of ethylene-vinyl acetate rubber/polyamide/graphene oxide thermoplastic elastomer nanocomposites. Rsc Advances 3(48):26166–26176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Reaction Engineering, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Polymer Engineering, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations