Skip to main content

Advertisement

Log in

Synthesis and characterization of antipyrine-imprinted polymers and their application for sustained release

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In view of technological significance of molecularly imprinted polymers (MIPs) in drug delivery, the ‘grafting from’ approach was employed to develop surface-imprinted silica particles for selective recognition and sustained delivery of a pharmaceutical drug antipyrine (ANP). ANP–MIP was fabricated using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker by UV irradiation via iniferter approach. Voltammetric measurements was used to scale the extraction and rebinding of ANP on glassy carbon electrode with Pt wire as counter electrode, Ag/AgCl as reference electrode. Various parameters were optimized for ascertaining the performance of ANP–MIP such as time, temperature, and pH. Grafted MIP was characterized by FTIR, thermogravimetry, elemental analysis, surface morphology (AFM) besides the recognition, rebinding and selectivity studies. Calibration curve linearly increases in concentration range of 0.1–2.0 mM with correlation coefficient R2 = 0.976 and limit of detection (LOD) as 0.448 µg mL−1. Thus, fabricated ANP–MIP was studied for controlled release of drug under varying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brodie BB, Axelrod J (1950) The fate of antipyrine in man. J Pharmacol Exp Ther 98:97–104

    CAS  PubMed  Google Scholar 

  2. Hoberman A, Paradise JL, Reynolds EA, Urkin J (1997) Efficacy of Auralgan for treating ear pain in children with acute otitis media. Arch Pediatr Adolsc Med 151:675–678

    Article  CAS  Google Scholar 

  3. Marmura MJ, Stephen SD, Schwedt TJ (2015) The acute treatment of migraine in adults: the American Headache Society evidence assessment of migraine pharmacotherapies. Headache 55:3–20

    Article  PubMed  Google Scholar 

  4. Zuehlke S, Duennbier U, Heberer T (2007) Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply. Chemosphere 69:1673–1680

    Article  CAS  PubMed  Google Scholar 

  5. Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Schmidt R, Stachel B, Von Tümpling W, Wanke A (2004) Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 57:107–126

    Article  CAS  PubMed  Google Scholar 

  6. Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere 49:539–544

    Article  CAS  PubMed  Google Scholar 

  7. Cai M, Zhang L, Qi F, Feng L (2013) Influencing factors and degradation products of antipyrine chlorination in water with free chlorine. J Environ Sci 25:77–84

    Article  CAS  Google Scholar 

  8. Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee S-Y, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzia P, Ferrari M (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res 62:57–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lulinski P (2017) Molecularly imprinted polymers based drug delivery devices: a way to application in modern pharmacotherapy. Mater Sci Eng C 76:1344–1353

    Article  CAS  Google Scholar 

  10. Wulff G, Gross T, Schonfeld R (1997) Enzyme models based on molecularly imprinted polymers with strong esterase activity. Angew Chem Int Ed 36:1962–1964

    Article  CAS  Google Scholar 

  11. Toorisaka E, Yoshida M, Uezu K, Goto M, Furusaki S (1999) Artificial biocatalyst prepared by the surface molecular imprinting technique. Chem Lett 28:387–388

    Article  Google Scholar 

  12. Mosbach K, Ramstom O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Nat Biotechnol 14:163–170

    Article  CAS  Google Scholar 

  13. Vidyasankar S, Dhal PK, Plunkett SD, Arnold FH (1995) Selective ligand-exchange adsorbents prepared by template polymerization. Biotechnol Bioeng 48:431–436

    Article  CAS  PubMed  Google Scholar 

  14. Kempe M, Mosbach K (1995) Molecular imprinting used for chiral separations. J Chromatogr A 694:3–13

    Article  CAS  Google Scholar 

  15. Saha D, Warren KE, Naskar AK (2014) Controlled release of antipyrine from mesoporous carbons. Microporous Mesoporous Mater 196:327–334

    Article  CAS  Google Scholar 

  16. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto V-P (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108:362–374

    Article  CAS  PubMed  Google Scholar 

  17. Goscianska J, Olejnik A, Nowak I (2017) APTES-functionalized mesoporous silica as a vehicle for antipyrine–adsorption and release studies. Colloids Surf A 533:187–196

    Article  CAS  Google Scholar 

  18. Sangalli ME, Maroni A, Zema L, Busetti C, Giordano F, Gazzaniga A (2001) In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery. J Control Release 73:103–110

    Article  CAS  PubMed  Google Scholar 

  19. Gazzaniga A, Sangalli M, Giordano F (1994) Oral Chronotopic® drug delivery systems: achievement of time and/or site specificity. Eur J Pharm Biopharm 40:246–250

    CAS  Google Scholar 

  20. Gazzaniga A, Iamartino P, Maffione G, Sangalli ME (1994) Oral delayed-release system for colonic specific delivery. Int J Pharm 108:77–83

    Article  CAS  Google Scholar 

  21. Gazzaniga A, Busetti C, Sangalli ME, Moro L, Giordano F (1995) Oral delayed-release system for colonic specific delivery. Int J Pharm 5:83–88

    CAS  Google Scholar 

  22. Yang G, Wang D, Li Z, Zhou S, Chen Y (2003) Adsorption isotherms on aminoantipyrine imprinted polymer stationary phase. Chromatographia 58(1):53–58

    CAS  Google Scholar 

  23. Otsu T, Yoshida M (1982) Role of initiator–transfer agent–terminator (iniferter) in radical polymerization: polymer design by organic disulfides as iniferters. Macromol Rapid Commun 3:127–132

    Article  CAS  Google Scholar 

  24. Otsu T, Matsunaga T, Doi T, Matsumoto A (1995) Features of living radical polymerization of vinyl monomers in homogeneous system using N, N-diethyldithiocarbamate derivatives as photoiniferters. Eur Polym J 31:67–78

    Article  CAS  Google Scholar 

  25. Caldorera-Moore M, Peppas NA (2009) Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliv Rev 61:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skoog DA, Holler FT, Nieman TA (1998) Principles of instrumental analysis, 5th edn. Harcourt Brace College Publishers, Florida, pp 13–14

    Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE., Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03 Revision D01. Gaussian Inc, Walling ford

  28. Dennington R, Keith T, Millam J (2007) GaussView 4.1. Semichem, Inc. Shawnee Mission

  29. Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  30. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255(4–6):327–335

    Article  CAS  Google Scholar 

  31. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto V-P (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108(2):362–374

    Article  CAS  PubMed  Google Scholar 

  32. Sellergren B, Lepisto M, Mosbach K (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. J Am Chem Soc 110:5853–5860

    Article  CAS  Google Scholar 

  33. Mosbach K, Haupt K (1998) Some new developments and challenges in non-covalent molecular imprinting technology. J Mol Recognit 11:62–68

    Article  CAS  PubMed  Google Scholar 

  34. Zhang H, Ye L, Mosbach K (2006) Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J Mol Recognit 19:248–259

    Article  CAS  PubMed  Google Scholar 

  35. Norell MC, Andersson HS, Nicholls IA (1998) Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. J Mol Recognit 11:98–102

    Article  CAS  PubMed  Google Scholar 

  36. Cunliffe D, Kirby A, Alexander C (2005) Molecularly imprinted drug delivery systems. Adv Drug Deliv Rev 57:1836–1853

    CAS  PubMed  Google Scholar 

  37. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73:121–136

    Article  CAS  PubMed  Google Scholar 

  38. Zaidi SA (2016) Molecular imprinted polymers as drug delivery vehicles. Drug Deliv 23:2262–2271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Department of Chemistry, Banaras Hindu University for AFM analysis. AK acknowledges UGC and BHU for university research fellowship. Financial assistance from DST, New Delhi is acknowledged (Grant no. EMR/2016/005245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, A., Singh, S., Gupta, N. et al. Synthesis and characterization of antipyrine-imprinted polymers and their application for sustained release. Polym. Bull. 75, 5235–5252 (2018). https://doi.org/10.1007/s00289-018-2326-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2326-x

Keywords

Navigation