Functionalization of poly(epichlorohydrin) using sodium hydrogen squarate: cytotoxicity and compatibility in blends with chitosan

  • Nelson Luis G. D. Souza
  • Michele Munk
  • Humberto M. Brandão
  • Luiz Fernando C. de Oliveira
Original Paper
  • 18 Downloads

Abstract

Polymeric blends between chitosan and poly(epichlorohydrin) (PECH) modified with sodium hydrogen squarate were prepared by the casting method, using formic acid (85%) as the solvent. The compatibility of the blends was studied by different methods, such as Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analyses. Cytotoxicity assays were also performed by the direct contact method to assess the feasibility of using these materials in veterinary devices. Based on the analysis results, we concluded that these polymers are compatible due to the interaction between the NH3+ chitosan groups and CO groups of the modified poly(epichlorohydrin), as well the hydrogen bond between the chlorine atom of the modified poly(epichlorohydrin) and the hydrogens of the chitosan methyl group. It is important to highlight that electrostatic interactions are also responsible for the non-toxicity of these materials in bovine fibroblast cells, which indicates the feasibility of their use in veterinary devices for cattle.

Keywords

Chitosan Poly(epichlorohydrin) Cytotoxicity Polymer blends Compatibility 

Notes

Acknowledgements

The authors wish to thank CNPq, CAPES and FAPEMIG (Brazilian agencies) for financial support.

References

  1. 1.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154.  https://doi.org/10.1021/ja00897a025 CrossRefGoogle Scholar
  2. 2.
    Kennedy FR (1989) Syntheses and separations using functional polymers Edited by D. C. Sherrington and P. Hodge, John Wiley & Sons, Chichester, 1988. pp. 454. ISBN 0-471-91848-2. Br Polym J 21(4):359–360.  https://doi.org/10.1002/pi.4980210415 CrossRefGoogle Scholar
  3. 3.
    Schnatter WFK (1992) Functionalized polymers and their applications, by A. Akelah and A. Moet, Chapman and Hall, London, 1990, 345 pp. J Polym Sci Part A Polym Chem 30(11):2473.  https://doi.org/10.1002/pola.1992.080301123 CrossRefGoogle Scholar
  4. 4.
    Pérez M, Ronda JC, Reina JA, Serra A (2001) Synthesis of functional polymers by chemical modification of PECH and PECH–PEO with substituted phenolates. Polymer 42(1):1–8.  https://doi.org/10.1016/S0032-3861(00)00352-9 CrossRefGoogle Scholar
  5. 5.
    Tiemblo P, Guzmán J, Riande E, Mijangos C, Reinecke H (2001) The gas transport properties of PVC functionalized with mercapto pyridine groups. Macromolecules 35(2):420–424.  https://doi.org/10.1021/ma010656s CrossRefGoogle Scholar
  6. 6.
    Herrero M, Quéméner E, Ulvé S, Reinecke H, Mijangos C, Grohens Y (2006) Bacterial adhesion to poly(vinyl chloride) films: effect of chemical modification and water induced surface reconstruction. J Adhes Sci Technol 20(2–3):183–195.  https://doi.org/10.1163/156856106775897801 CrossRefGoogle Scholar
  7. 7.
    Lisa G, Avram E, Paduraru G, Irimia M, Hurduc N, Aelenei N (2003) Thermal behaviour of polystyrene, polysulfone and their substituted derivatives. Polym Degrad Stab 82(1):73–79CrossRefGoogle Scholar
  8. 8.
    Pérez M, Reina JA, Serra A, Ronda JC (2000) New evidences of the degradation mechanism of poly(oxy-1-chloromethylethylene) with basic reagents: studies with poly (oxy-l-chloromethyl-ethylene-co-oxyethylene). Polymer 41(20):7331–7337.  https://doi.org/10.1016/S0032-3861(00)00081-1 CrossRefGoogle Scholar
  9. 9.
    Pérez M, Ronda JC, Reina JA, Serra A (2000) Studies on the microstructure of the polymer obtained by chemical modification of poly(oxy-1-chloromethyl-ethylene-co-oxyethylene) (PECH-PEO) with phenolate. Polymer 41(7):2349–2358.  https://doi.org/10.1016/S0032-3861(99)00423-1 CrossRefGoogle Scholar
  10. 10.
    Otsu T, Yoshida M (1982) Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Die Makromolekulare Chemie Rapid Commun 3(2):127–132.  https://doi.org/10.1002/marc.1982.030030208 CrossRefGoogle Scholar
  11. 11.
    Iizawa T, Nishikubo T, Ichikawa M, Sugawara Y, Okawara M (1985) Substitution and elimination reactions of poly(epichlorohydrin) and poly(2-chloroethyl vinyl ether) using phase transfer catalysis. J Polym Sci Polym Chem Ed 23(7):1893–1906.  https://doi.org/10.1002/pol.1985.170230705 CrossRefGoogle Scholar
  12. 12.
    Navarro R, Pérez M, Rodriguez G, Reinecke H (2007) Selective nucleophilic substitution reactions on poly(epichlorohydrin) using aromatic and aliphatic thiol compounds. Eur Polym J 43(10):4516–4522.  https://doi.org/10.1016/j.eurpolymj.2007.07.033 CrossRefGoogle Scholar
  13. 13.
    Lee J-C, Litt MH, Rogers CE (1997) Synthesis and properties of (Alkylthio)methyl-substituted poly(oxyalkylene)s and (Alkylsulfonyl)methyl-substituted poly(oxyalkylene)s. Macromolecules 30(13):3766–3774.  https://doi.org/10.1021/ma970163g CrossRefGoogle Scholar
  14. 14.
    Lee J-C, Litt MH, Rogers CE (1998) Miscibility behaviors of (Alkylsulfonyl)methyl-substituted poly(oxyalkylene) blends. Macromolecules 31(13):4232–4239.  https://doi.org/10.1021/ma971813j CrossRefGoogle Scholar
  15. 15.
    de Oliveira VE, Freitas MCR, Diniz R, Yoshida MI, Speziali NL, Edwards HGM, de Oliveira LFC (2008) Crystal structure and vibrational spectra of some metal complexes of pseudo-oxocarbon bis(dicyanomethylene)squarate in its cis and trans forms. J Mol Struct 881(1–3):57–67.  https://doi.org/10.1016/j.molstruc.2007.08.029 CrossRefGoogle Scholar
  16. 16.
    Teles WM, Farani RdA, Maia DS, Speziali NL, Yoshida MI, de Oliveira LFC, Machado FC (2006) Crystal structure, thermal analysis and spectroscopic properties of Tetrabutylammonium 3,5-bis(dicyanomethylene)-cyclopentane-1,2,4-trionate: an intriguing pseudo-oxocarbon and its zinc(II) complex. J Mol Struct 783(1–3):52–60.  https://doi.org/10.1016/j.molstruc.2005.08.020 CrossRefGoogle Scholar
  17. 17.
    Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12(3):267–281.  https://doi.org/10.1163/156856201750180807 CrossRefGoogle Scholar
  18. 18.
    Wang X, Wu P, Hu X, You C, Guo R, Shi H, Guo S, Zhou H, Chaoheng Y, Zhang Y, Han C (2016) Polyurethane membrane/knitted mesh-reinforced collagen–chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J Mech Behav Biomed Mater 56:120–133.  https://doi.org/10.1016/j.jmbbm.2015.11.021 CrossRefGoogle Scholar
  19. 19.
    Liu Y, Ma L, Gao C (2012) Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater Sci Eng 32(8):2361–2366.  https://doi.org/10.1016/j.msec.2012.07.008 CrossRefGoogle Scholar
  20. 20.
    Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629.  https://doi.org/10.1016/j.jfda.2014.10.008 CrossRefGoogle Scholar
  21. 21.
    Cheng Y-H, Tsai T-H, Jhan Y-Y, Chiu AW-H, Tsai K-L, Chien C-S, Chiou S-H, Liu CJ-l (2016) Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym 144:390–399.  https://doi.org/10.1016/j.carbpol.2016.02.080 CrossRefGoogle Scholar
  22. 22.
    Anirudhan TS, Divya PL, Nima J (2016) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 284:1259–1269.  https://doi.org/10.1016/j.cej.2015.09.057 CrossRefGoogle Scholar
  23. 23.
    Tsiourvas D, Sapalidis A, Papadopoulos T (2016) Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater Today Commun 7:59–66.  https://doi.org/10.1016/j.mtcomm.2016.03.006 CrossRefGoogle Scholar
  24. 24.
    Kanimozhi K, Khaleel Basha S, Sugantha Kumari V (2016) Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater Sci Eng 61:484–491.  https://doi.org/10.1016/j.msec.2015.12.084 CrossRefGoogle Scholar
  25. 25.
    Barros AAA, Alves A, Nunes C, Coimbra MA, Pires RA, Reis RL (2013) Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomater 9(11):9086–9097.  https://doi.org/10.1016/j.actbio.2013.06.036 CrossRefGoogle Scholar
  26. 26.
    Meng D, Dong L, Wen Y, Xie Q (2015) Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng 47:266–272.  https://doi.org/10.1016/j.msec.2014.11.049 CrossRefGoogle Scholar
  27. 27.
    Mattioli-Belmonte M, Cometa S, Ferretti C, Iatta R, Trapani A, Ceci E, Falconi M, De Giglio E (2014) Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym 110:173–182.  https://doi.org/10.1016/j.carbpol.2014.03.097 CrossRefGoogle Scholar
  28. 28.
    Xin-Yuan S, Tian-Wei T (2004) New contact lens based on chitosan/gelatin composites. J Bioact Compat Polym 19(6):467–479.  https://doi.org/10.1177/0883911504048410 CrossRefGoogle Scholar
  29. 29.
    Wan Y, Lu X, Dalai S, Zhang J (2009) Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochim Acta 487(1–2):33–38.  https://doi.org/10.1016/j.tca.2009.01.007 CrossRefGoogle Scholar
  30. 30.
    Pereira AGB, Paulino AT, Nakamura CV, Britta EA, Rubira AF, Muniz EC (2011) Effect of starch type on miscibility in poly(ethylene oxide) (PEO)/starch blends and cytotoxicity assays. Mater Sci Eng 31(2):443–451.  https://doi.org/10.1016/j.msec.2010.11.004 CrossRefGoogle Scholar
  31. 31.
    Park S-N, Park J-C, Kim HO, Song MJ, Suh H (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 23(4):1205–1212.  https://doi.org/10.1016/S0142-9612(01)00235-6 CrossRefGoogle Scholar
  32. 32.
    Georgopoulos SL, Diniz R, Yoshida MI, Speziali NL, Santos HFD, Junqueira GMA, de Oliveira LFC (2006) Vibrational spectroscopy and aromaticity investigation of squarate salts: a theoretical and experimental approach. J Mol Struct 794(1–3):63–70.  https://doi.org/10.1016/j.molstruc.2006.01.035 CrossRefGoogle Scholar
  33. 33.
    Georgopoulos SL, Diniz R, Rodrigues BL, de Oliveira LFC (2005) Crystal structure and Raman spectra of rubidium hydrogen squarate. J Mol Struct 741(1–3):61–66.  https://doi.org/10.1016/j.molstruc.2005.01.048 CrossRefGoogle Scholar
  34. 34.
    Souza NLGD, Salles TF, Brandão HM, Edwards HGM, Oliveira LFCd (2015) Synthesis, vibrational spectroscopic and thermal properties of oxocarbon cross linked chitosan. J Braz Chem Soc 26:1247–1256.  https://doi.org/10.5935/0103-5053.20150090 Google Scholar
  35. 35.
    Guanaes D, Bittencourt E, Eberlin MN, Sabino AA (2007) Influence of polymerization conditions on the molecular weight and polydispersity of polyepichlorohydrin. Eur Polym J 43(5):2141–2148.  https://doi.org/10.1016/j.eurpolymj.2007.02.016 CrossRefGoogle Scholar
  36. 36.
    Platzer N (1982) Polymer degradation—principles and practical applications, Wolfram Schnabel, MacMillan, New York, 1982, 227 pp. J Polym Sci Polym Lett Ed 20(9):509.  https://doi.org/10.1002/pol.1982.130200907 CrossRefGoogle Scholar
  37. 37.
    Souza NLGD, Brandão HM, de Oliveira LFC (2011) Spectroscopic and thermogravimetric study of chitosan after incubation in bovine rumen. J Mol Struct 1005(1–3):186–191.  https://doi.org/10.1016/j.molstruc.2011.08.049 CrossRefGoogle Scholar
  38. 38.
    Li B, Shan C-L, Zhou Q, Fang Y, Wang Y-L, Xu F, Han L-R, Ibrahim M, Guo L-B, Xie G-L, Sun G-C (2013) Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 11(5):1534–1552.  https://doi.org/10.3390/md11051534 CrossRefGoogle Scholar
  39. 39.
    Georgopoulos SL, Edwards HGM, de Oliveira LFC (2013) Raman spectroscopic analysis of the interaction between squaric acid and dimethylsulfoxide. Spectrochim Acta Part A Mol Biomol Spectrosc 111:54–61.  https://doi.org/10.1016/j.saa.2013.03.052 CrossRefGoogle Scholar
  40. 40.
    Nithya H, Selvasekarapandian S, Selvin PC, Kumar DA, Hema M, Kawamura J (2012) Laser Raman and conductivity studies of plasticized polymer electrolyte P(ECH-EO):propylenecarbonate:γ-butyrolactone:LiClO4. J Solid State Electrochem 16(5):1791–1797.  https://doi.org/10.1007/s10008-011-1610-6 CrossRefGoogle Scholar
  41. 41.
    Chae SY, Jang M-K, Nah J-W (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release 102(2):383–394.  https://doi.org/10.1016/j.jconrel.2004.10.012 CrossRefGoogle Scholar
  42. 42.
    Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11.  https://doi.org/10.1016/j.addr.2009.09.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nelson Luis G. D. Souza
    • 1
  • Michele Munk
    • 2
  • Humberto M. Brandão
    • 3
  • Luiz Fernando C. de Oliveira
    • 4
  1. 1.Department of Exact Science and BiotechnologyFederal University of TocantinsGurupiBrazil
  2. 2.Department of BiologyFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.Embrapa Dairy Cattle (CNPGL)Juiz de ForaBrazil
  4. 4.Department of ChemistryFederal University of Juiz de ForaJuiz de ForaBrazil

Personalised recommendations