Polymer Bulletin

, Volume 75, Issue 10, pp 4341–4358 | Cite as

Effect of operating pressure and pyrolysis conditions on the performance of carbon membranes for CO2/CH4 and O2/N2 separation derived from polybenzimidazole/Matrimid and UIP-S precursor blends

  • Niaz Behnia
  • Vahid PirouzfarEmail author
Original Paper


This work aims to extend previous studies about performance of gas separation through the carbon molecular sieve membrane (CMSMs) in different conditions by employing statistical analysis and modeling to find the optimal pyrolysis and operating conditions. General D-optimal design is applied to optimize gas permeability and selectivity by implementing five main parameters consisting of “precursor materials”, “blend composition”, “final pyrolysis temperature”, “vacuum pressure” and “operating pressure”. Results from statistical analysis showed that each of these five variables plays a significant role in performance of carbon membranes. Also findings showed that pyrolysis temperature was the dominant factor among the others; whereas operating pressure was almost a neutral one. The optimal condition is the blend composition of 75% Matrimid, pyrolysis temperature at 745.1 °C and vacuum pressure of 1.0E−07 Torr. Under these conditions, the model estimated a CO2/CH4 selectivity of 133.7. These developed models can be employed as a useful technique for gas transport optimization.


Membranes Greenhouse gases separation Synthesis and processing Carbon molecular sieve 


Compliance with ethical standards


There is no funding to report for this submission.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Genceli EA, Tasdemir RS, Urper GM, Gumrukcu S, Gokce ZG, Dagli U, Turken T, Sarac AS, Koyuncu I (2017) Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polym Bull. CrossRefGoogle Scholar
  2. 2.
    Boroglu MS, Gurkaynak MA (2011) Polym Bull 66:463CrossRefGoogle Scholar
  3. 3.
    Suzuki T, Yamada Y (2005) Polym Bull 53:139CrossRefGoogle Scholar
  4. 4.
    Taniguchi I, Ootera Y, Chowdhury FA et al (2012) Polym Bull 69:405CrossRefGoogle Scholar
  5. 5.
    Sridhar BS, Smitha TM (2007) Aminabhavi a separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Sep Purif Rev 36:113–174CrossRefGoogle Scholar
  6. 6.
    Sridhar S, Aminabhavi TM, Mayor SJ, Ramakrishna M (2007) Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes. Ind Eng Chem Res 46(24):8144–8151CrossRefGoogle Scholar
  7. 7.
    Ahmadizadegan H, Ghavvas F, Ranjbar M, Esmaielzadeh S (2017) Synthesis and characterization of fluorinated polyimide/TiO2 nanocomposites: enhancement of separation of four gases, thermal, optical and mechanical properties. Polym Bull. CrossRefGoogle Scholar
  8. 8.
    Sridhar S, Aminabhavi TM, Ramakrishna M (2007) Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. J Appl Polym Sci 105:1749–1756CrossRefGoogle Scholar
  9. 9.
    Hosseini SS, Omidkhah MR, Moghaddam AZ, Pirouzfar V, Krantz WB, Tan NR (2014) Enhancing the properties and gas separation performance of PBI-polyimides blended carbon molecular sieve membranes via optimization of pyrolysis process. J Seper Purif 122(10):278–289CrossRefGoogle Scholar
  10. 10.
    Nematollahi MH, Dehaghani AHS, Pirouzfar V, Akhondi E (2016) Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2. Macromol Res 24(9):782–792CrossRefGoogle Scholar
  11. 11.
    Ywu-Jang F, Chien-Chieh H, Lin D-W, Tsai H-A, Huang S-H, Hung W-S, Lee K-R, Lai J-Y (2017) Adjustable microstructure carbon molecular sieve membranes derived from thermally stable polyetherimide/polyimide blends for gas separation. Carbon 113:10–17CrossRefGoogle Scholar
  12. 12.
    Pirouzfar V, Omidkhah MR (2016) Mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm. Iran Polym J 25(3):203–212CrossRefGoogle Scholar
  13. 13.
    Soleymanipour SF, Dehaghani AHS, Pirouzfar V, Alihosseini A (2016) The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. J Appl Polym Sci 133(34):43839CrossRefGoogle Scholar
  14. 14.
    Zhang C, Koros WJ (2017) Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv Mater 29:1701631. CrossRefGoogle Scholar
  15. 15.
    Li L, Yao J, Xiao P, Shang J, Feng Y, Webley PA, Wang H (2013) One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid Polym Sci 291(11):2711–2717CrossRefGoogle Scholar
  16. 16.
    Robeson LM (2010) Polymer blends in membrane transport processes. Ind Eng Chem Res 49(23):11859–11865CrossRefGoogle Scholar
  17. 17.
    Saufi SM, Ismail AF (2004) Fabrication of carbon membranes for gas separation-a review. Carbon 42:241–259CrossRefGoogle Scholar
  18. 18.
    Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400CrossRefGoogle Scholar
  19. 19.
    Kang SW, Kim JH, Char K, Kang YS (2005) Long-term separation performance of phthalate polymer/silver salt complex membranes for olefin/paraffin separation. Macromol Res 13(2):162–166CrossRefGoogle Scholar
  20. 20.
    Hosseini SS, Chung TS (2014) Polymer blends and carbonized polymer blends. US Patent No. US 20110192281, US 8623124 B2Google Scholar
  21. 21.
    David LIB, Ismail AF (2003) Influence of the thermostabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J Membr Sci 213:285–291CrossRefGoogle Scholar
  22. 22.
    Li NN, Fane AG, Winston WS, Matsuura T (2008) Advanced membrane technology and applications. Wiley, New YorkCrossRefGoogle Scholar
  23. 23.
    Noble RD, Stern SA (1995) Membrane separations technology: principles and applications. Elsevier, New YorkGoogle Scholar
  24. 24.
    Park HB, Kim TK, Lee JM, Lee SY, Lee YM (2004) Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. J Membr Sci 229:117–127CrossRefGoogle Scholar
  25. 25.
    Shao L, Chung TS, Wensley G, Goh SH, Pramoda KP (2004) Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes. J Membr Sci 244:77–87CrossRefGoogle Scholar
  26. 26.
    Tin PS, Chung TS, Liu Y, Wang R (2004) Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon 42:3123–3131CrossRefGoogle Scholar
  27. 27.
    Kim YK, Park HB, Lee YM (2005) Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties. J Membr Sci 255(1–2):265–273CrossRefGoogle Scholar
  28. 28.
    Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24(Suppl):843–854Google Scholar
  29. 29.
    Centeno TA, Fuertes AB (2000) Carbon molecular sieve gas separation membranes based on poly (vinylidene chloride-co-vinyl chloride). Carbon 38:1067–1073CrossRefGoogle Scholar
  30. 30.
    Centeno TA, Fuertes AB (2001) Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Sep Purif Tech 25(1–3):379–384CrossRefGoogle Scholar
  31. 31.
    Wei W, Hu H, You L, Chen G (2002) Preparation of carbon molecular sieve membrane from phenol–formaldehyde novolac resin. Carbon 40(3):465–477CrossRefGoogle Scholar
  32. 32.
    Liaw D, Wang K, Huang Y, Lee K, Lai J, Ha C (2012) Advanced polyimide materials: syntheses, physical properties and applications: review article. Prog Polym Sci 37(7):907–974CrossRefGoogle Scholar
  33. 33.
    Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34(6):561–580CrossRefGoogle Scholar
  34. 34.
    Fuertes AB, Nevskaia DM, Centeno TA (1999) Carbon composite membranes from Matrimid and Kapton polyimides for gas separation. Micro Meso Mater 33:115–125CrossRefGoogle Scholar
  35. 35.
    Anderson CJ, Pas SJ, Arora G, Kentish SE, Hill AJ, Sandler SI, Stevens G (2008) Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes. J Membr Sci 322(1):19–27CrossRefGoogle Scholar
  36. 36.
    Weh K, Noack M, Sieber I, Caro J (2002) Permeation of single gases and gas mixtures through faujasite-type molecular sieve membranes. Microporous Mesoporous Mater 54(1–2):27–36CrossRefGoogle Scholar
  37. 37.
    Miranda R, Pakdel H, Roy C, Vasile C (2001) Vacuum pyrolysis of commingled plastics containing PVC II. Product analysis. Polym Degrad Stab 73:47–67CrossRefGoogle Scholar
  38. 38.
    Kim YK, Park HB, Lee YM (2005) Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties. J Membr Sci 255(1–2):265–273CrossRefGoogle Scholar
  39. 39.
    Steel KM, Koros WJ (2003) Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41:253–266CrossRefGoogle Scholar
  40. 40.
    Suda H, Haraya K (1997) Gas permeation through micro pores of carbon molecular sieve membranes derived from kapton polyimide. J Phys Chem B 101(20):3988–3994CrossRefGoogle Scholar
  41. 41.
    Salinas O, Ma X, Wang Y, Han Y, Pinnau I (2017) Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed gas selectivity. RSC Adv. 7:3265–3272CrossRefGoogle Scholar
  42. 42.
    Geiszler VC, Koros WJ (1996) Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Ind Eng Chem Res 35:2999–3003CrossRefGoogle Scholar
  43. 43.
    Kim YK, Park HB, Lee YM (2005) Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. J Membr Sci 251:159–167CrossRefGoogle Scholar
  44. 44.
    Lee HJ, Suda H, Haraya K, Moon SH (2007) Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). J Membr Sci 296:139–146CrossRefGoogle Scholar
  45. 45.
    Hosseini SS, Chung TS (2009) Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J Membr Sci 328:174–185CrossRefGoogle Scholar
  46. 46.
    Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603CrossRefGoogle Scholar
  47. 47.
    Sridhar S, Smitha B, Ramakrishna M, Aminabhavi TM (2006) Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. J Membr Sci 280(1–2):202–209CrossRefGoogle Scholar
  48. 48.
    Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM (2007) Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloid Surf A Physicochem Eng Aspects 297:267–274CrossRefGoogle Scholar
  49. 49.
    Khayet M, Cojocaru C, Garcia-Payo MC (2010) Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation. J Membr Sci 351:234–245CrossRefGoogle Scholar
  50. 50.
    Onsekizoglu P, SavasBahceci K, Acar J (2010) The use of factorial design for modeling membrane distillation. J Membr Sci 349:225–230CrossRefGoogle Scholar
  51. 51.
    He X, Hagg MB (2011) Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Ind Eng Chem Res 50:8065–8072CrossRefGoogle Scholar
  52. 52.
    Su J, Lua AC (2006) Influence of carbonization parameters on the transport properties of carbon membranes by statistical analysis. J Membr Sci 278:335–343CrossRefGoogle Scholar
  53. 53.
    Schulze T, Magerl R, Streck G, Brack W (2012) Use of factorial design for the multivariate optimization of polypropylene membranes for the cleanup of environmental samples using the accelerated membrane-assisted cleanup approach. J Chrom A 1225:26–36CrossRefGoogle Scholar
  54. 54.
    Fu S, Sanders ES, Kulkarni S, Chu Y-H, Wenz GB, Koros WJ (2017) The significance of entropic selectivity in carbon molecular sieve membranes derived from 6FDA/DETDA:DABA(3:2) polyimide. J Membr Sci 539:329–343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations