Skip to main content

Properties and ammonia gas sensing applications of different inorganic acid-doped poly(2-chloroanilines)

Abstract

Poly(2-chloroaniline) was synthesized by chemical oxidative polymerization method using different inorganic acid dopants such as HCl, H2SO4, and HClO4. The effects of the dopants on the physical and electrical properties of the prepared polymers are well studied. The electrical conductivity of the prepared polymers was correlated with the dopant acids used in polymerization. The electrical conductivity of the polymers was found thermally activated and increases linearly with the evolution of temperature from 20 to 90 °C. Chemoresistive gas sensors were fabricated using prepared poly(2-chloroaniline) and their sensing evaluation was carried out against different concentrations of ammonia gas steps from 1 to 300 ppm. The polymers present a linear increase in their resistances when exposed to different concentrations of ammonia gas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Mark HF, Bikales NM, Overberger CG, Menges G (eds) (1988) Encyclopedia of polymer science and engineering. Wiley, New York, p 462

    Google Scholar 

  2. Shaktawat V, Sharma K, Saxena NS (2010) Structural and electrical characterization of protonic acid doped polypyrrole. J Ovonic Res 6:239–245

    CAS  Google Scholar 

  3. Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B 77:657–663

    Article  CAS  Google Scholar 

  4. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    Article  CAS  Google Scholar 

  5. Sun Y, Liu W, Tan J, Wang H (2016) Nano- and micro-structured random copolymer modified cycloaliphatic epoxy resins for use as light-emitting diode encapsulation. J Macromol Sci Pure Appl Chem 53:201–209

    Article  CAS  Google Scholar 

  6. Stutzmann N, Friend RH, Sirringhaus H (2003) Self-aligned, vertical-channel, polymer field-effect transistors. Science 299:1881–1884

    Article  CAS  PubMed  Google Scholar 

  7. Camurlu P, Gültekin C, Gürbulak V (2013) Optoelectronic properties and electrochromic device application of novel pyrazole based conducting polymers. J Macromol Sci Pure Appl Chem 50:588–596

    Article  CAS  Google Scholar 

  8. Wung CJ, Pan Y, Prasad PN (1991) Poly(p-phenylene vinylene)-silica composite: a novel sol–gel processed non-linear optical material for optical waveguides. Polymer 32:605–608

    Article  CAS  Google Scholar 

  9. Li D, Huang J, Kaner RB (2009) A unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  PubMed  Google Scholar 

  10. Cuentas Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez Romero P (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv Funct Mater 15:1125–1135

    Article  CAS  Google Scholar 

  11. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  CAS  Google Scholar 

  12. Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Polyaniline nanofibre supported platinum nano electrocatalysts for direct methanol fuel cells. Nanotechnology 17:5254–5259

    Article  CAS  Google Scholar 

  13. Ali V, Kaur R, Kamal N, Singh S, Jain SC, Kang HPS, Zulfequar M, Husain M (2006) Use of Cu+1 dopant and it’s doping effects on polyaniline conducting system in water and tetrahydrofuran. J Phys Chem Solids 67:659–664

    Article  CAS  Google Scholar 

  14. Kahol PK, Satheesh Kumar KK, Geetha S, Trivedi DC (2003) Effect of dopants on electron localization length in polyaniline. Synth Met 139:191–200

    Article  CAS  Google Scholar 

  15. Chung SF, Wen T-C, Gopalan A (2005) Influence of dopant size on the junction properties of polyaniline. Mater Sci Eng B 116:125–130

    Article  CAS  Google Scholar 

  16. Prokes J, Stejskal J (2004) Polyaniline prepared in the presence of various acids 2. Thermal stability of conductivity. Polym Degrad Stab 86:187–195

    Article  CAS  Google Scholar 

  17. Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met 48:91–97

    Article  CAS  Google Scholar 

  18. Linganathan P, Samuel JM (2014) Effect of dodecyl benzene sulphonic acid on the. electrical conductivity behaviour of poly(2-chloroaniline) and poly(2- chloroaniline)/silk blends. Am J Poly Sci 4:107–116

    CAS  Google Scholar 

  19. Masanori A, Claudia S, Pringsheim E, Vladimir MM, Otto SW (2005) Optical ozone-sensing properties of poly(2-chloroaniline), poly(N-methylaniline) and polyaniline films. Sens Actuators B 108:528–534

    Article  CAS  Google Scholar 

  20. Linganathan P, Sundararajan J, Samuel JM (2014) Synthesis, characterization, and photoconductivity studies on poly(2-chloroaniline) and poly(2-chloroaniline)/CuO nanocomposites. J Compos. https://doi.org/10.1155/2014/838975

    Article  Google Scholar 

  21. Palaniappan S (1995) The effect of temperature on the behaviour of poly (o-chloroaniline) salts: conductivity and spectral studies. Polymers Adv Technol 5:263–268

    Article  Google Scholar 

  22. Pandule SS, Shisodia SU, Patil MR, Chabukswar VV (2016) Synthesis and characterization of methanesulfonic acid doped poly(2-chloroaniline), study of its physical properties and ammonia gas sensing application. J Macromol Sci Pure Appl Chem 53:768–772

    Article  CAS  Google Scholar 

  23. Jin Z, Su YX, Duan YX (2001) Development of a polyaniline-based optical ammonia sensor. Sens Actuators B 72:75–79

    Article  CAS  Google Scholar 

  24. Nicho ME, Trejo M, Garcia-Valenzuela A, Saniger JM, Palacios J, Hu H (2001) Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas. Sens Actuators B 76:18–24

    Article  CAS  Google Scholar 

  25. Hu H, Trejo M, Nicho ME, Saniger JM, Garcia-Valenzuela A (2002) Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sens Actuators B 82:14–23

    Article  CAS  Google Scholar 

  26. Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J Phys Chem B 108:19717–19720

    Article  CAS  Google Scholar 

  27. Hong KH, Oh KW, Kang TJ (2004) Polyaniline–nylon 6 composite fabric for ammonia gas sensor. J Appl Polym Sci 92:37–42

    Article  CAS  Google Scholar 

  28. Liu HQ, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4:671–675

    Article  CAS  Google Scholar 

  29. Xin GL, Mei RH, Ya QL, Mei FZ (2005) Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline. J Mater Sci Lett 15:1343–1352

    Google Scholar 

  30. Salaneck WR, Lundstrom I, Huang WS, MacDiarmid AG (1986) A two-dimensional-surface ‘state diagram’ for polyaniline. Synth Met 13:291–296

    Article  CAS  Google Scholar 

  31. Chiang JC, MacDiarmid AG (1986) Polyaniline: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193–205

    Article  CAS  Google Scholar 

  32. Kaplan S, Conwell EM, Richter AF, MacDiarmid AG (1989) A solid-state NMR investigation of the structure and dynamics of polyanilines. Synth Met 29:235–242

    Article  Google Scholar 

  33. Richter AF, Ray A, Ramanathan KV, Manohar SK, Furst GT, Opella SJ, MacDiarmid AG, Epstein AJ (1989) 15N NMR of polyaniline. Synth Met 29:243–249

    Article  Google Scholar 

  34. Athawale AA, Kulkarni MV, Chabukswar VV (2002) Studies on chemically synthesized soluble acrylic acid doped polyaniline. Mater Chem Phys 73:106–110

    Article  CAS  Google Scholar 

  35. Wan M (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20:2926–2932

    Article  CAS  Google Scholar 

  36. Tzou K, Gregory R (1993) A method to prepare soluble polyaniline salt solutions-in situ doping of PANI base with organic dopants in polar solvents. Synth Met 53:365–377

    Article  CAS  Google Scholar 

  37. Palaniappan S, Narayana BH (1994) Composition and spectral studies of polyaniline salts. Polym Adv Tech 5:225–230

    Article  CAS  Google Scholar 

  38. Tang J, Jing X, Wang B, Wang F (1998) Infrared spectra of soluble polyaniline. Synth Met 24:231–238

    Article  Google Scholar 

  39. Kim YH, Foster C, Chiang J, Heeger AJ (1988) Photoinduced localized charged excitations in polyaniline. Synth Met 25:49–58

    Article  Google Scholar 

  40. Malathi J, Kumaravadivel MG, Brahmanandhan M, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3. polymer electrolyte. J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  41. Bhadra S, Singha NK, Khastgir D (2006) Polyaniline by new mini emulsion polymerization and the effect of reducing agent on conductivity. Synth Met 156:1148–1154

    Article  CAS  Google Scholar 

  42. Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and it’s comparison with chemically synthesized polyaniline. J Appl Polym Sci 104:1900–1904

    Article  CAS  Google Scholar 

  43. Catedral MD, Tapia AKG, Sarmago RV, Tamayo JP, del Rosario EJ (2004) Effect of dopant ions on the electrical conductivity and microstructure of polyaniline (emeraldine salt). Science 16:41–46

    Article  Google Scholar 

  44. Reynolds JR, Child AD, Ruiz JP, Hong SY, Marynick DS (1993) Substituent effects on the electrical conductivity and electrochemical properties of conjugated furanylphenylene polymers. Macromolecules 26:2095–2103

    Article  CAS  Google Scholar 

  45. Pandule S, Oprea A, Barsan N, Weimar U, Persaud K (2014) Synthesis of poly-[2,5-di(thiophen-2-yl)-1H-pyrrole] derivatives and the effects of the substituents on their properties. Synth Met 196:158–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Nowrosjee Wadia College, Pune for providing general laboratory facility to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudam S. Pandule.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandule, S.S., Patil, M.R. & Keri, R.S. Properties and ammonia gas sensing applications of different inorganic acid-doped poly(2-chloroanilines). Polym. Bull. 75, 4469–4483 (2018). https://doi.org/10.1007/s00289-017-2263-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2263-0

Keywords

  • Poly(2-chloroaniline)
  • Chemical polymerization
  • Conducting polymers
  • Ammonia sensors