Polymer Bulletin

, Volume 75, Issue 9, pp 4019–4036 | Cite as

Microphase separation and thermo-mechanical properties of energetic poly(urethane–urea)

  • Jie Lv
  • Jizhen Huo
  • Ye Yang
  • Yingfeng YuEmail author
  • Guozhu Zhan
  • Huikun Zhang
Original Paper


In this paper, the phase segregation and thermo-mechanical properties of energetic poly(urethane–urea) (EPUU) for propellant binder application are analyzed. Series of EPUUs are synthesized from copolymer of 3,3-bis-azido methyl oxetane and tetrahydrofuran, tolylene diisocyanate, and 3,3′-dichloro-4,4′-dianilino methane, with different hard segment contents ranging from 9.7 to 38%. With the enlargement of hard segment content from 9.7 to 28.9% (EPUU1–EPUU3), the percentage of ordered part via hydrogen-bonded C=O in urea increases as investigated by FTIR, further increase of hard segment content to 38% results in less hydrogen-bonded ordered part but more disordered part. The SAXS result also verifies the highest degree of phase segregation of EPUU3. The thermo-mechanical properties of energetic poly(urethane–urea) are related to the degree of microphase separation. With the increase of hard segment content, the tensile strength increases roughly, while the elongation at break drops from EPUU1 to EPUU4. EPUU3 exhibits the highest value of tensile strength and acceptable elongation at break.


Energetic Poly(urethane–urea) Microphase separation Mechanical property 



This research work was supported by the SAST Foundation No. 2015101.

Supplementary material

289_2017_2251_MOESM1_ESM.docx (61 kb)
Supplementary material 1 (DOCX 61 kb)


  1. 1.
    Pisharath S, Ang HG (2007) Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer. Polym Degrad Stabil 92(7):1365–1377. CrossRefGoogle Scholar
  2. 2.
    Zhang ZJ, Wang G, Wang Z, Zhang YL, Ge Z, Luo YJ (2015) Synthesis and characterization of novel energetic thermoplastic elastomers based on glycidyl azide polymer (GAP) with bonding functions. Polym Bull 72(8):1835–1847. CrossRefGoogle Scholar
  3. 3.
    Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305. CrossRefPubMedGoogle Scholar
  4. 4.
    Cheradame H, Andreolety JP, Rousset E (1991) Synthesis of polymers containing pseudohalide groups by cationic polymerization. 1. Homopolymerization of 3,3-bis(azidomethyl)oxetane and its copolymerization with 3-chloromethyl-3-(2,5,8-trioxadecyl)oxetane. Makromol Chem 192(4):901–918CrossRefGoogle Scholar
  5. 5.
    Zhang C, Li J, Luo YJ, Zhai B (2015) Preparation and property studies of carbon nanotubes covalent modified BAMO-AMMO energetic binders. J Energ Mater 33(4):305–314. CrossRefGoogle Scholar
  6. 6.
    Kubota N, Sonobe T, Yamamoto A, Shimizu H (1990) Burning rate characteristics of GAP propellants. J Propul Power 6(6):686–689CrossRefGoogle Scholar
  7. 7.
    Frankel M, Grant L, Flanagan J (1992) Historical development of glycidyl azide polymer. J Propul Power 8(3):560–563CrossRefGoogle Scholar
  8. 8.
    Nair JK, Satpute RS, Polke BG, Mukundan T, Asthana SN, Singh H (2002) Synthesis and characterisation of bis-azido methyl oxetane and its polymer and copolymer with tetrahydrofuran. Defence Sci J 52(2):147–156CrossRefGoogle Scholar
  9. 9.
    Mohan YM, Mani Y, Raju KM (2006) Synthesis of azido polymers as potential energetic propellant binders. Des Monomers Polym 9(3):201–236. CrossRefGoogle Scholar
  10. 10.
    Luo Y, Chen P, Zhao FQ, Hu RZ, Li SW, Gao Y (2004) Kinetics and mechanism of the thermal decomposition reaction of 3,3-bis(azidomethyl)oxetane/tetrahydrofuran copolymer. Chin J Chem 22(11):1219–1224CrossRefGoogle Scholar
  11. 11.
    Miyazaki T, Kubota N (1992) Energetics of BAMO. Propellants Explos Pyrotech 17(1):5–9CrossRefGoogle Scholar
  12. 12.
    Zhang C, Luo YJ, Jiao QJ, Zhai B, Guo XY (2014) Application of the BAMO-AMMO alternative block energetic thermoplastic elastomer in composite propellant. Propellants Explos Pyrot 39(5):689–693. CrossRefGoogle Scholar
  13. 13.
    Manser GE, Ross DL (1981) Synthesis of energetic polymers. DTIC DocumentGoogle Scholar
  14. 14.
    Manser G, Guimont J, Ross D (1981) A new polymerization technique for preparing low molecular weight polyether glycols. SR Int, Menlo ParkGoogle Scholar
  15. 15.
    Zhai JX, Yang RJ, Li JM (2008) Catalytic thermal decomposition and combustion of composite BAMO-THF propellants. Combust Flame 154(3):473–477. CrossRefGoogle Scholar
  16. 16.
    Cooper SL, Tobolsky AV (1966) Properties of linear elastomeric polyurethanes. J Appl Polym Sci 10(12):1837–1844CrossRefGoogle Scholar
  17. 17.
    Janik H, Palys B, Petrovic ZS (2003) Multiphase-separated polyurethanes studied by micro-Raman spectroscopy. Macromol Rapid Comm 24(3):265–268. CrossRefGoogle Scholar
  18. 18.
    Romanova V, Begishev V, Karmanov V, Kondyurin A, Maitz MF (2002) Fourier transform Raman and Fourier transform infrared spectra of cross-linked polyurethaneurea films synthesized from solutions. J Raman Spectrosc 33(10):769–777CrossRefGoogle Scholar
  19. 19.
    Ryan AJ, Willkomm WR, Bergstrom TB, Macosko CW, Koberstein JT, Yu CC, Russell TP (1991) Dynamics of (micro) phase separation during fast, bulk copolymerization: some synchrotron SAXS experiments. Macromolecules 24(10):2883–2889CrossRefGoogle Scholar
  20. 20.
    Leung LM, Koberstein JT (1985) Small-angle scattering analysis of hard-microdomain structure and microphase mixing in polyurethane elastomers. J Polym Sci B 23(9):1883–1913Google Scholar
  21. 21.
    Garrett J, Runt J, Lin J (2000) Microphase separation of segmented poly (urethane urea) block copolymers. Macromolecules 33(17):6353–6359CrossRefGoogle Scholar
  22. 22.
    Zia KM, Bhatti IA, Barikani M, Zuber M, Bhatti HN (2009) XRD studies of polyurethane elastomers based on chitin/1,4-butane diol blends. Carbohyd Polym 76(2):183–187. CrossRefGoogle Scholar
  23. 23.
    Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO (2010) Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci 115(1):263–268CrossRefGoogle Scholar
  24. 24.
    Eceiza A, Martin M, De La Caba K, Kortaberria G, Gabilondo N, Corcuera M, Mondragon I (2008) Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 48(2):297–306CrossRefGoogle Scholar
  25. 25.
    Camberlin Y, Pascault JP (1984) Phase segregation kinetics in segmented linear polyurethanes: relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. J Polym Sci Polym Phys Ed 22(10):1835–1844CrossRefGoogle Scholar
  26. 26.
    Mattia J, Painter P (2007) A comparison of hydrogen bonding and order in a polyurethane and poly (urethane-urea) and their blends with poly (ethylene glycol). Macromolecules 40(5):1546–1554CrossRefGoogle Scholar
  27. 27.
    Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47(11):4105–4114CrossRefGoogle Scholar
  28. 28.
    Ferry A, Jacobsson P, Van Heumen J, Stevens J (1996) Raman, infra-red and dsc studies of lithium coordination in a thermoplastic polyurethane. Polymer 37(5):737–744CrossRefGoogle Scholar
  29. 29.
    Lee HS, Wang YK, Hsu SL (1987) Spectroscopic analysis of phase separation behavior of model polyurethanes. Macromolecules 20(9):2089–2095CrossRefGoogle Scholar
  30. 30.
    Bonart R, Müller E (1974) Phase separation in urethane elastomers as judged by low-angle X-ray scattering. I. Fundamentals. J Macromol Sci B 10(1):177–189CrossRefGoogle Scholar
  31. 31.
    Keicher T, Kuglstatter W, Eisele S, Wetzel T, Krause H (2009) Isocyanate-free curing of glycidyl azide polymer (GAP) with bis-propargyl-succinate (II). Propell Explos Pyrot 34(3):210–217. CrossRefGoogle Scholar
  32. 32.
    Diaz E, Brousseau P, Ampleman G, Prud’homme RE (2003) Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, PolyNIMMO and PolyGLYN. Propell Explos Pyrot 28(3):101–106. CrossRefGoogle Scholar
  33. 33.
    Mathew S, Manu SK, Varghese TL (2008) Thermomechanical and morphological characteristics of cross-linked GAP and GAP-HTPB networks with different diisocyanates. Propell Explos Pyrot 33(2):146–152. CrossRefGoogle Scholar
  34. 34.
    Yilgör I, Yilgör E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 58:A1–A36CrossRefGoogle Scholar
  35. 35.
    Tereshatov V, Makarova M, Senichev VY, Volkova E, Vnutskikh ZA, Slobodinyuk A (2015) The role of the soft phase in the hardening effect and the rate dependence of the ultimate physico-mechanical properties of urethane-containing segmented elastomers. Colloid Polym Sci 293(1):153–164CrossRefGoogle Scholar
  36. 36.
    Tereshatov V, Makarova M, Tereshatova E (2004) Abnormal thermal and mechanical behavior of plasticized polyurethaneureas. Polymer science Series A, Chemistry, physics 46(12):1232–1238Google Scholar
  37. 37.
    Tereshatov V, Tereshatova E, Makarova M, Tereshatov S (2002) Influence of chemical structure and composition of mixed soft segments on the properties of elastomers with urethane-urea hard blocks. Polym Sci Ser A 44(3):275–281Google Scholar
  38. 38.
    Tereshatov V, Vnutskikh Z, Slobodinyuk A, Makarova M, Senichev V (2016) New multi-block isophorone diisocyanate-based copolymers with urethane urea hard segments. J Elastomers Plast 48(4):289–304CrossRefGoogle Scholar
  39. 39.
    Lee HS, Hsu SL (1989) An analysis of phase separation kinetics of model polyurethanes. Macromolecules 22(3):1100–1105CrossRefGoogle Scholar
  40. 40.
    Ishihara H, Kimura I, Saito K, Ono H (1974) Infrared studies on segmented polyurethane-urea elastomers. J Macromol Sci B 10(4):591–618CrossRefGoogle Scholar
  41. 41.
    Paik Sung C, Smith T, Sung N (1980) Properties of segmented polyether poly (urethaneureas) based of 2, 4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules 13(1):117–121CrossRefGoogle Scholar
  42. 42.
    Ning L, De-Ning W, Sheng-Kang Y (1997) Hydrogen-bonding properties of segmented polyether poly (urethane urea) copolymer. Macromolecules 30(15):4405–4409CrossRefGoogle Scholar
  43. 43.
    Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14(2):147–154CrossRefGoogle Scholar
  44. 44.
    Koberstein JT, Stein RS (1983) Small-angle X-ray scattering studies of microdomain structure in segmented polyurethane elastomers. J Polym Sci Polym Phys Ed 21(8):1439–1472CrossRefGoogle Scholar
  45. 45.
    Paik Sung C, Hu C, Wu C (1980) Properties of segmented poly (urethaneureas) based on 2, 4-toluene diisocyanate. 1. Thermal transitions, X-ray studies, and comparison with segmented poly (urethanes). Macromolecules 13(1):111–116CrossRefGoogle Scholar
  46. 46.
    Yilgör I, Riffle J, Wilkes G, McGrath J (1982) Siloxane-urea segmented copolymers. Polym Bull 8(11–12):535–542Google Scholar
  47. 47.
    Stanford JL, Still RH, Wilkinson AN (2003) Effects of soft-segment prepolymer functionality on structure—property relations in RIM copolyurethanes. Polymer 44(14):3985–3994. CrossRefGoogle Scholar
  48. 48.
    Ertem SP, Yilgor E, Kosak C, Wilkes GL, Zhang M, Yilgor I (2012) Effect of soft segment molecular weight on tensile properties of poly (propylene oxide) based polyurethaneureas. Polymer 53(21):4614–4622CrossRefGoogle Scholar
  49. 49.
    Sheth JP, Unal S, Yilgor E, Yilgor I, Beyer FL, Long TE, Wilkes GL (2005) A comparative study of the structure-property behavior of highly branched segmented poly(urethane urea) copolymers and their linear analogs. Polymer 46(23):10180–10190. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular ScienceFudan UniversityShanghaiChina
  2. 2.The 806th Institute of the Eighth Academy of CASCHuzhouChina

Personalised recommendations