Skip to main content

Advertisement

Log in

H2 effect in Chevron–Phillips ethylene trimerization catalytic system: an experimental and theoretical investigation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Effect of H2 amount on the activity and selectivity of Chevron–Phillips trimerization system, i.e., chromium(III) tris(2-ethylhexanoate)/2,5-dimethylpyrrole/triethylaluminum (TEA)/tetrachloroethane (TCE), was examined. In this regard, in addition to catalytic ingredients and ethylene monomer, 2.5 and 5 bar H2 were utilized in the oligomerization reactor and the reaction results were compared with those without H2. Results showed that addition of hydrogen has a remarkable effect on polymer formation and catalyst activity so that 147% decrease in polymer formation and 38% increase in activity were observed upon addition of 5 bar H2. However, its effect on 1-hexene selectivity was not pronounced. Then, molecular modeling with DFT method was employed to simulate oligomerization process in molecular level. Energy results revealed that formation of 1-hexene has less energy barrier than the formation of 1-butene and 1-octene which confirms higher selectivity of Chevron–Phillips system toward 1-hexene formation. Furthermore, interaction of hydrogen with catalytic active center was studied via hydrogenolysis of metalacycles. Energy results revealed that it is energetically a facile process so that the bigger the circle, the easier hydrogenolysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bazvand R, Bahri-Laleh N, Nekoomanesh-Haghighi M, Abedini H (2015) Highly efficient FeCl3 doped Mg(OEt)2/TiCl4-based Ziegler–Natta catalysts for ethylene polymerization. Des Monomers Polym 18:599–610

    Article  CAS  Google Scholar 

  2. Hadian N, Hakim S, Nekoomanesh-Haghighi M, Bahri-Laleh N (2014) Storage time effect on dynamic structure of MgCl2.nEtOH adducts in heterogeneous Ziegler-Natta catalysts. Polyolefins J 1:33–41

    Google Scholar 

  3. Hanifpour A, Bahri-Lale N, Nekomanesh-Haghighi M, Karimi M (2016) Study on unsaturated structure and tacticity of poly1-hexene and new copolymer of 1-hexene/5-hexene-1-ol prepared by metallocene catalyst. J Organomet Chem 819:103–108

    Article  CAS  Google Scholar 

  4. Kaminsky W (2012) Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules 45:3289–3297

    Article  CAS  Google Scholar 

  5. Nouri-Ahangarani F, Bahri-Laleh N, Nekomanesh-Haghighi M, Karbalaei M (2016) Synthesis of highly Isotactic Poly 1-hexene using Fe-doped Mg(OEt)2/TiCl4/ED Ziegler–Natta catalytic system. Des Monomers Polym 19:394–405

    Article  CAS  Google Scholar 

  6. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Mirmohammadi SA (2016) Poly1-hexene: new impact modifier in HIPS technology. J Appl Polym Sci 133:8508

    Article  CAS  Google Scholar 

  7. Ahmadjo S (2016) Preparation of ultra high molecular weight amorphous poly(1-hexene) by a Ziegler-Natta catalyst. Polym Adv Technol 27:1523–1529

    Article  CAS  Google Scholar 

  8. Priola A, Gozzelino G, Ferrero F (1985) Cationic oligomerization of 3-methyl-1-butene catalyzed by BF3-protonic donor complexes. Polym Bull 13:245–251

    Article  CAS  Google Scholar 

  9. Argo C, Gillam SM, Orsini F (2000) Identification of olefin end groups in commercial polybutene oligomers. Polym Bull 44:71–78

    Article  CAS  Google Scholar 

  10. Jeon JY, Park DS, Lee DH, Eo SC, Park SY, Jeong MS, Kang YY, Lee J, Lee BY (2015) A chromium precursor for the Phillips ethylene trimerization catalyst: (2-ethylhexanoate) 2CrOH. Dalton Trans 44:11004–11012

    Article  CAS  PubMed  Google Scholar 

  11. Vadake Kulangara S, Haveman D, Vidjayacoumar B, Korobkov I, Gambarotta S, Duchateau R (2015) Effect of cocatalysts and solvent on selective ethylene oligomerization. J Organomet Chem 34:1203–1210

    Article  CAS  Google Scholar 

  12. Zilbershtein TM, Kardash VA, Suvorova VV, Golovko AK (2014) Decene formation in ethylene trimerization reaction catalyzed by Cr–pyrrole system. Appl Catal A 475:371–378

    Article  CAS  Google Scholar 

  13. Tang S, Liu Z, Yan X, Li N, Cheng R, He X, Liu B (2014) Kinetic studies on the pyrrole–Cr-based Chevron-Phillips ethylene trimerization catalyst system. Appl Catal A 481:39–48

    Article  CAS  Google Scholar 

  14. Yang Y, Liu Z, Cheng R, He X, Liu B (2014) Mechanistic DFT study on ethylene trimerization of chromium catalysts supported by a versatile pyrrole ligand system. Organometallics 33:2599–2607

    Article  CAS  Google Scholar 

  15. He-Kuan Luo D-GL, Song Li (2004) The effect of halide and the coordination geometry of chromium center in homogeneous catalyst system for ethylene trimerization. J Mol Catal A 221:9–17

    Article  CAS  Google Scholar 

  16. Yang HKY, Lee J, Paik H, Jang HG (2000) Roles of chloro compound in homogeneous [Cr(2 ethylhexanoate)3/2,5-dimethylpyrrole/triethylaluminum/chlorocompound] catalyst system for ethylene trimerization. Appl Catal A 193:29–38

    Article  CAS  Google Scholar 

  17. Steele RB, Katzakian A, Scigliano Jr JJ, Hamel EE (1976) Imide oxirane reactions, US Patent US3962182 A

  18. Frisch MJ, Trucks GW, Schlegel HB (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Becke AD (1993) A new mixing of Hartree–Fock and local-density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  21. Bahri-Laleh N (2016) Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl Surf Sci 379:395–401

    Article  CAS  Google Scholar 

  22. Bahri-Laleh N, Poater A, Cavallo L, Mirmohammadi SA (2014) Exploring the mechanism of Grignard metathesis polymerization of 3-alkylthiophenes. Dalton Trans 43:15143–15150

    Article  CAS  PubMed  Google Scholar 

  23. Correa A, Bahri-Laleh N, Cavallo L (2013) How well can DFT reproduce key interactions in Ziegler-Natta systems? Macromol Chem Phys 214:1980–1989

    Article  CAS  Google Scholar 

  24. Bahri-Laleh N, Nekoomanesh-Haghighi M, Mirmohammadi SA (2012) A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler–Natta catalyst. J Organomet Chem 719:74–79

    Article  CAS  Google Scholar 

  25. Bahri-Laleh N, Arabi H, Mehdipor-Ataei S, Nekoomanesh-Haghighi M, Zohuri GH, Seifali M, Akbari Z (2012) Activation of Ziegler-Natta catalysts by organohalide promoters: a combined experimental and density functional theory study. J App Polym Sci 123:2526–2533

    Article  CAS  Google Scholar 

  26. Bahri-Laleh N, Correa A, Mehdipour- Ataei S, Arabi H, Nekoomanesh-Haghighi M, Zohuri GH, Cavallo L (2011) Moving up and down the Ti-oxidation state in Ziegler–Natta catalysis. Macromolecules 44:778–783

    Article  CAS  Google Scholar 

  27. Schäfer A, Horn H, Ahlrichs R (1992) SV SVP TVP Ahlrichs basis set. J Chem Phys 97:2571

    Article  Google Scholar 

  28. Rabeah J, Bauer M, Baumann W, McConnell AE, Gabrielli WF, Webb PB, Selent D, Brückner A (2012) Formation, operation and deactivation of Cr catalysts in ethylene tetramerization directly assessed by operando EPR and XAS. ACS Catal 3:95–102

    Article  CAS  Google Scholar 

  29. Kuechle W, Dolg M, Stoll H, Preuss H (1994) ECP SDD. J Chem Phys 100:7535

    Article  CAS  Google Scholar 

  30. Kuhlmann S (2006) Selective Tri- and tetramerization of ethylene—from ligand design to mini-plant operation. Universität Erlangen-Nürnberg

  31. Jiang T, Zhang L, Gao J, Cao C (2016) Hydrogen: efficient promoter for PNP/Cr(III)/MAO catalyzed ethylene tetramerization toward 1-octene. Appl Petrochem Res 6:413–427

    Article  CAS  Google Scholar 

  32. Briggs JR, Chem J (1989) The selective trimerization of ethylene to hex-1-ene. J Chem Soc Chem Commun 11:674

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank MOLNAC (www.molnac.unisa.it) for its computer facilities and Iran Polymer and Petrochemical Institute (IPPI) for financial support under Grant number of 43791105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeimeh Bahri-Laleh.

Electronic supplementary material

Cartesian coordinates of all the species discussed in the text are available free of charge at the journal webpage. Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahri-Laleh, N., Karimi, M., Kalantari, Z. et al. H2 effect in Chevron–Phillips ethylene trimerization catalytic system: an experimental and theoretical investigation. Polym. Bull. 75, 3555–3565 (2018). https://doi.org/10.1007/s00289-017-2228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2228-3

Keywords

Navigation