Advertisement

Polymer Bulletin

, Volume 75, Issue 8, pp 3539–3553 | Cite as

Electrospun polyurethane microporous membranes for waterproof and breathable application: the effects of solvent properties on membrane performance

Original Paper

Abstract

Electrospun polyurethane (PU) based nanofibrous mats were fabricated from the solutions prepared with different volume ratios of N,N-dimethylformamide (DMF), methanol (MeOH), and dichloromethane (DCM). The membrane structures such as the nanofiber diameter, the pore size distribution, and the porosity were investigated in detail. And the morphological, mechanical, waterproof, and breathable properties of the membranes were used to estimate the characteristics of the membranes. Various solutions were compared to obtain porous nanofibrous membranes without beads or curls, which revealed that morphologies of PU fibrous membranes could be finely regulated by tuning the solvent volume ratios and the solution concentrations. The results showed that the nanofibrous membranes with the DMF/DCM solvents exhibited the high fiber diameter (500–700 nm) and the wide pore size distribution (0.6–1.2 µm). Besides, the water contact angle (WCA) of the PU nanofibrous film using the 100% DMF was 133°, but it could not persist for a long time. And the resultant membranes presented high hydrostatic pressure to 2.1 kPa, modest water vapor transmission rate of 10.1 kg/m2/day, as well as robust mechanical properties with tensile strength of 6.6 MPa, which are desirable in many important applications including protective clothing.

Keywords

Polyurethane Electrospinning Nanofibers Waterproof Solvent 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11272289) and Zhejiang Provincial Natural Science Foundation of China (No. LY16E030007).

Supplementary material

289_2017_2223_MOESM1_ESM.docx (10.3 mb)
Supplementary material 1 (DOCX 10557 kb)

References

  1. 1.
    Wang S, Zhao XL, Yin X, Yu JY, Ding B (2016) Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8(36):23985–23994CrossRefGoogle Scholar
  2. 2.
    Akbari A, Aliyarizadeh E, Rostami SMM, Homayoonfal M (2016) Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties. Desalination 377:11–22CrossRefGoogle Scholar
  3. 3.
    Itoh H, Li Y, Chan KHK, Kotaki M (2016) Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polym Bull 73:2761–2777CrossRefGoogle Scholar
  4. 4.
    Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membr Sci 446(11):350–375CrossRefGoogle Scholar
  5. 5.
    Zhao JH, Si N, Xu L, Tang XP, Song YH, Sun ZY (2016) Experimental and theoretical study on the electrospinning nanoporous fibers process. Mater Chem Phys 170(6):294–302CrossRefGoogle Scholar
  6. 6.
    Rivin D, Kendrick CE, Gibson PW, Schneider NS (2001) Solubility and transport behavior of water and alcohols in Nafion. Polymer 42(2):623–635CrossRefGoogle Scholar
  7. 7.
    Tabatabaei S, Carreau P, Ajji A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325(2):772–782CrossRefGoogle Scholar
  8. 8.
    Wang HZ, Yu JH, Bai H, Li L (2016) Preparation of PAN nanofiltration membranes by supercritical-CO2-induced phase separation. J Supercrit Fluid 118:89–95CrossRefGoogle Scholar
  9. 9.
    Tijing LD, Choi JS, Lee S, Kim SH, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453(3):435–462CrossRefGoogle Scholar
  10. 10.
    Su CL, Li YP, Dai YZ, Gao F, Tang KX, Cao HB (2016) Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning. Mater Lett 170:67–71CrossRefGoogle Scholar
  11. 11.
    Wanga R, Liu Y, Li B, Hsiaoa BS, Chu B (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Membr Sci 392(2):167–174CrossRefGoogle Scholar
  12. 12.
    Jiang WC, Huang YG, Gu GT, Meng WD, Qing FL (2006) A novel waterborne polyurethane containing short fluoroalkyl chains: synthesis, characterization and its application on cotton fabrics surface. Appl Surf Sci 253(4):2304–2309CrossRefGoogle Scholar
  13. 13.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  14. 14.
    Ko F, Gogotsi Y, Ali A, Naguib N, Ye H (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165CrossRefGoogle Scholar
  15. 15.
    Yoon B, Lee S (2011) Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fibers Polym 12(1):57–64CrossRefGoogle Scholar
  16. 16.
    Kang YK, Park CH, Kim J, Kang TJ (2007) Application of electrospun polyurethane web to breathable water-proof fabrics. Fibers Polym 8(5):564–570CrossRefGoogle Scholar
  17. 17.
    Hacker C, Karahaliloglu Z, Seide G, Denkbas EB, Gries T (2014) Functionally modified, melt-electrospun thermoplastic polyurethane mats for wound-dressing applications. J Appl Polym Sci 131(8):1179–1181CrossRefGoogle Scholar
  18. 18.
    Erdem R, Usta I, Akalin M, Atak O, Yuksek M, Pars A (2015) The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers. Appl Surf Sci 334:227–230CrossRefGoogle Scholar
  19. 19.
    Lee YJ, Kim BS, Kim H, Kim I-S (2012) Enhanced mechanical properties and pre-tension effects of polyurethane (PU) nanofiber filaments prepared by electrospinning and dry twisting. J Polym Res 19(2):1–5CrossRefGoogle Scholar
  20. 20.
    Wang YZ, Wang BC, Wang GX, Yin TY, Yu QS (2009) A novel method for preparing electrospun fibers with nano-/micro-scale porous structures. Polym Bull 63:259–265CrossRefGoogle Scholar
  21. 21.
    He F, Fan J, Chan LH (2014) Preparation and characterization of electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) membrane. High Perform Polym 26(7):817–825CrossRefGoogle Scholar
  22. 22.
    Sheng JL, Li Y, Wang XF, Si Y, Yu JY, Ding B (2016) Thermal inter-fiber adhesion of the polyacrylonitrile/fluorinated polyurethane nanofibrous membranes with enhanced waterproof-breathable performance. Sep Purif Technol 158:53–61CrossRefGoogle Scholar
  23. 23.
    Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29CrossRefGoogle Scholar
  24. 24.
    Bae J, Baek I, Choi H (2017) Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem Eng J 307:670–678CrossRefGoogle Scholar
  25. 25.
    Xu YJ, Zou LM, Lu HW, Wei YZ, Hua JB, Chen SY (2016) Preparation and characterization of electrospun PHBV/PEO mats: the role of solvent and PEO component. J Mater Sci 51(12):5695–5711CrossRefGoogle Scholar
  26. 26.
    Bandyopadhyay P, Park WB, Layek RK, Uddin ME, Kim NH, Kim H-G, Lee JH (2016) Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film. J Membr Sci 500:106–114CrossRefGoogle Scholar
  27. 27.
    Gopia S, Balakrishnan P, Pius A, Thomas S (2017) Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohydr Polym 165:115–122CrossRefGoogle Scholar
  28. 28.
    Soliman S, Pagliari S, Rinaldia A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E (2010) Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 6(4):1227–1237CrossRefGoogle Scholar
  29. 29.
    Gu XY, Li N, Cao J, Xiong J (2017) Preparation of electrospun polyurethane/hydrophobic silica gel nanofibrous membranes for waterproof and breathable application. Polym Eng Sci.  https://doi.org/10.1002/pen.24726 Google Scholar
  30. 30.
    Lalia BS, Guillen E, Arafat HA, Hashaikeh R (2014) Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 332(1):134–141CrossRefGoogle Scholar
  31. 31.
    Baek W-I, Pant HR, Nirmala R, Nam K-T, Oh H-J, Kim H-Y (2012) Mechanical property enhancement of non-bonding electrospun mats via adhesive. Polym Int 61(5):844–849CrossRefGoogle Scholar
  32. 32.
    Wang JQ, Li Y, Tian HY, Sheng JL, Yu JY, Ding B (2014) Waterproof and breathable membranes of waterborne fluorinated polyurethane modified electrospun polyacrylonitrile fibers. RSC Adv 4(105):61068–61076CrossRefGoogle Scholar
  33. 33.
    Mei S, Xiao CF, Hu XY, Shu W (2011) Hydrolysis modification of PVC/PAN/SiO2 composite hollow fiber membrane. Desalination 280(1):378–383CrossRefGoogle Scholar
  34. 34.
    Li X, Yu XF, Cheng C, Deng L, Wang M, Wang XF (2015) Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation. ACS Appl Mater Interfaces 7(39):21919–21930CrossRefGoogle Scholar
  35. 35.
    Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospun multiwalled nanotube/poly (methyl methacrylate) nanofibers. Adv Mater 19(9):1228–1233CrossRefGoogle Scholar
  36. 36.
    Zhou YQ, Fang J, Wang XG, Lin T (2012) Strip twisted electrospun nanofiber yarns: structural effects on tensile properties. J Mater Res 27(3):537–544CrossRefGoogle Scholar
  37. 37.
    Laivaa AL, Venugopala JR, Sridhara S, Rangarajana B, Navaneethana B, Ramakrishnaa S (2014) Novel and simple methodology to fabricate porous and buckled fibrous structures for biomedical applications. Polymer 55(22):5837–5842CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  3. 3.College of FashionZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations