Advertisement

Polymer Bulletin

, Volume 75, Issue 7, pp 3241–3265 | Cite as

Selective adsorption of gold and silver in bromine solutions by acetate cellulose composite membranes coated with polyaniline or polypyrrole

  • Salvador Rascón-Leon
  • María Mónica Castillo-Ortega
  • Irela Santos-Sauceda
  • Guillermo Tiburcio Munive
  • Dora Evelia Rodriguez-Felix
  • Teresa Del Castillo-Castro
  • José Carmelo Encinas
  • Jesús Leobardo Valenzuela-García
  • Jesús Manuel Quiroz-Castillo
  • Beatriz García-Gaitan
  • Pedro Jesús Herrera-Franco
  • Jesús Alvarez-Sanchez
  • José Zeferino Ramírez
  • Luis Sergio Quiroz-Castillo
Original Paper
  • 258 Downloads

Abstract

This paper presents the selective adsorption of bromine-metallic complexes of Au and Ag on composite membranes, as well as the desorption process and redoping of the conducting polymers. The polyaniline (PANI) and polypyrrole (PPy) membranes exhibited relevant adsorption properties. 72% for gold and 98% for silver with PANI, 50% for gold and 97% for silver with PPy, in bromine complexes. The adsorption capabilities of the composite membranes were attributed to the ion exchange between the dopant and the AuBr 4 or AgBr 2 complexes. Both materials fitted to a Langmuir isotherm. PANI-based membranes reached 31.4% of gold and 54.4% of silver desorption whereas PPy-based membranes reached 54% of gold and 28.8% of silver. Redoping studies suggested the potential reuse of the PANI-based membranes at least for six cycles of the adsorption/desorption process. The preparation of cellulose acetate membranes modified with poly (acrylic acid) and triphenyl phosphate and coated with the conducting polymers, PANI or PPy was in accordance to our previously reported method. The composite membranes were characterized by FT-IR, scanning electron microscopy, electrical conductivity measurements, IV, mechanical tests, contact angle measurements, XRD and energy disperse spectroscopy. The novelty of the present work is the combination of electroconductive polymers, for the recovery of metals, and bromide as a leachate, less harmful than the traditionally used leachers.

Keywords

Conducting polymers Adsorption Ion exchange Desorption Redoping 

Notes

Acknowledgements

The authors wish to thank their colleagues Angel Romero Acosta for his assistance in the analysis by atomic absorption spectroscopy, Silvia Burruel for obtaining the SEM images, Lorena Armenta and Diego Hernandez for her/his assistance in the analysis by FT-IR, Marcos Cota for his assistance in IV studies, Susana Meráz for her assistance in XRD studies. As well as Salvador Rascón-Leon and I. Santos-Sauceda thank CONACYT for the granted scholarship.

References

  1. 1.
    Morales-Acosta MD, Quevedo-López MA, Gnade BE, Ramírez-Bon R (2011) PMMA-SiO2 organic–inorganic hybrid films: determination of dielectric characteristics. J Sol Gel Sci Technol 58:218–224CrossRefGoogle Scholar
  2. 2.
    Azizi A, Petre CF, Olsen C, Larachi F (2010) Electrochemical behavior of gold cyanidation in the presence of a sulfide-rich industrial ore versus its major constitutive sulfide minerals. Hydrometallurgy 101:108–119CrossRefGoogle Scholar
  3. 3.
    Qiu X, Hu Z, Song B, Li H, Zou J (2014) A novel process for silver recovery from a refractory Au–Ag ore in cyanidation by pretreatment with sulfating leaching using pyrite as reductant. Hydrometallurgy 144–145:34–38CrossRefGoogle Scholar
  4. 4.
    Xie F, Dreisinger DB (2009) Use of ferricyanide for gold and silver cyanidation. Trans Nonferr Met Soc China 19:714–718CrossRefGoogle Scholar
  5. 5.
    Estay H, Ortiz M, Romero J (2013) A novel process based on gas filled membrane absorption to recover cyanide in gold mining. Hydrometallurgy 134–135:166–176CrossRefGoogle Scholar
  6. 6.
    Fernando K, Lucien F, Tran T, Carter ML (2008) Ion exchange resins for the treatment of cyanidation tailings: part 3—resin deterioration under oxidative acid conditions. Miner Eng 21:683–690CrossRefGoogle Scholar
  7. 7.
    Vegter NM, Sanderbergh RF (1997) Communications discussion of the adsorption kinetic of dicyanoaurate and dicyanoargentate ions in activated carbon. Metall Mater Trans B 28B:345–347CrossRefGoogle Scholar
  8. 8.
    Adams MD (1992) The mechanisms of adsorption of Ag(CN)2 and Ag+ on to activated carbon. Hydrometallurgy 31:121–138CrossRefGoogle Scholar
  9. 9.
    Souza C, Majuste D, Dantas MSS, Ciminelli VST (2014) Selective adsorption of gold over copper cyanocomplexes on activated carbon. Hydrometallurgy 147–148:188–195CrossRefGoogle Scholar
  10. 10.
    Yanuar E (2015) Suprapto. leaching and adsorption of gold from Lape-Sumbawa Rocks (Indonesia) by hypochlorite-chloride. Procedia Chem 17:59–65CrossRefGoogle Scholar
  11. 11.
    Gurung M, Adhikari BB, Kawakita H, Ohto K, Inoue K, Alam S (2013) Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy 133:84–93CrossRefGoogle Scholar
  12. 12.
    Virolainen S, Tyster M, Haapalainen M, Sainioa T (2016) Ion exchange recovery of silver from concentrated base metal-chloride solutions. Hydrometallurgy 152:100–106CrossRefGoogle Scholar
  13. 13.
    Kononova ON, Shatnykh KA, Prikhod’ko KV, Kashirin DM (2009) Ion exchange recovery of gold(I) and silver(I) from thiosulfate solutions. Russ J Phys Chem A 83:2340–2345CrossRefGoogle Scholar
  14. 14.
    Kononova ON, Kholmogorov AG, Danilenko NV, Goryaeva NG, Shatnykh KA, Kachin SV (2007) Recovery of silver from thiosulfate and thiocyanate leach solutions by adsorption on anion exchange resins and activated carbon. Hydrometallurgy 88:189–195CrossRefGoogle Scholar
  15. 15.
    Wejman-Gibas K, Pilsniak-Rabiega M (2016) Studies of extractive removal of silver(I) from chloride solutions. E3S Web Conf 8:01016CrossRefGoogle Scholar
  16. 16.
    Akgül M, Karabakan A, Acar O, Yürüm Y (2006) Removal of silver(I) from aqueous solutions with clinoptilolite. Microporous Mesoporous Mater 94:99–104CrossRefGoogle Scholar
  17. 17.
    Elwakeel KZ, El-Sayed GO, Darweesh RS (2013) Fast and selective removal of silver(I) from aqueous media by modified chitosan resins. Int J Miner Process 120:26–34CrossRefGoogle Scholar
  18. 18.
    Yu H, Zi F, Hub X, Nie Y, Xiang P, Xu J, Chi H (2015) Adsorption of the gold–thiosulfate complex ion onto cupric ferrocyanide (CuFC)-impregnated activated carbon in aqueous solutions. Hydrometallurgy 154:111–117CrossRefGoogle Scholar
  19. 19.
    Song X, Gunawan P, Jiang R, Leong SSJ, Wang K, Xu R (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168CrossRefGoogle Scholar
  20. 20.
    Pesic B, Storhok V (1992) Adsorption of gold on activated carbon in bromide solutions. Metall Trans B 23:557–566CrossRefGoogle Scholar
  21. 21.
    Dadgar A (1989) Refractory concentrate gold leaching: cyanide vs. bromine. J Miner Metals Mater Soc 41:37–41CrossRefGoogle Scholar
  22. 22.
    Pesic B, Sergent RH (1991) A rotating disk study of gold dissolution by bromine. J Miner Met Mater Soc 43:35–37CrossRefGoogle Scholar
  23. 23.
    Mensah-Biney R, Hepworth MT, Reid KJ (1993) Loading of gold bromo species onto anion exchange resin. Miner Eng 6:173–191CrossRefGoogle Scholar
  24. 24.
    Mensah-Biney R, Reid KJ, Hepworth MT (1997) Kinetics of gold-bromide loading onto activated carbon. Miner Metall Process 14:7–13Google Scholar
  25. 25.
    Park ChS, Lee Ch, Kwon OS (2016) Review: conducting polymer based nanobiosensors. Polymers 8:249CrossRefGoogle Scholar
  26. 26.
    Li Ch, Yi-Ting Hsu Y-T, Hu W-W (2016) The regulation of osteogenesis using electroactive polypyrrole films. Polymers 8:258CrossRefGoogle Scholar
  27. 27.
    Kaitsuka Y, Hayashi N, Shimokawa T, Togawa E, Goto H (2016) Synthesis of polyaniline (PANI) in nano-reaction field of cellulose nanofiber (CNF), and carbonization. Polymers 8:40CrossRefGoogle Scholar
  28. 28.
    Shahabuddin S, Sarih NM, Mohamad S, Ching JJ (2016) SrTiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers 8:27CrossRefGoogle Scholar
  29. 29.
    Yow S-Z, Lim TH, Evelyn KF, Yim EKF, Lim ChT, Leong KW (2011) A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering. Polymers 3:527–544CrossRefGoogle Scholar
  30. 30.
    Takei T, Dong Q, Yonesaki Y, Kumada N, Kinomura N (2011) Synthesis of polypyrrole-intercalated grafted zirconium phosphate films by anodic electrodeposition and their electrochemical capacities. Polymers 3:1–9CrossRefGoogle Scholar
  31. 31.
    Bhattarai S, Kim JS, Yun Y-S, Lee Y-S (2016) Preparation of polyaniline-coated polystyrene nanoparticles for the sorption of silver ions. React Funct Polym 105:52–59CrossRefGoogle Scholar
  32. 32.
    Wei Y, Yang R, Liu J-H, Huang X-J (2013) Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim Acta 105:218–223CrossRefGoogle Scholar
  33. 33.
    Hashemi F, Zanganeh AR (2016) Electrochemically induced regioregularity of the binding sites of a polyaniline membrane as a powerful approach to produce selective recognition sites for silver ion. J Electroanal Chem 767:24–33CrossRefGoogle Scholar
  34. 34.
    Chávez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CAS, Alves KGB, de Melo CP (2015) Efficient removal of Cr(VI) and Cu(II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836CrossRefGoogle Scholar
  35. 35.
    Devi PSR, Deo MN, Kawadiya S, Raje N, Vishwakarma SR, Verma R, Reddy AVR (2015) Evaluation of the effect of heating on the ion exchange capacity of polyaniline. Synth Metals 210(Part B):297–303CrossRefGoogle Scholar
  36. 36.
    Javadian H (2014) Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution. J Ind Eng Chem 20:4233–4241CrossRefGoogle Scholar
  37. 37.
    Li S, Wei Y, Kong Y, Tao Y, Yao Ch, Zhou R (2015) Electrochemical removal of lead ions using paper electrode of polyaniline/attapulgite composites. Synth Met 199:45–50CrossRefGoogle Scholar
  38. 38.
    Karthik R, Meenakshi S (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177CrossRefGoogle Scholar
  39. 39.
    Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717CrossRefGoogle Scholar
  40. 40.
    Khan AA, Ahmad R, Zeeshan M, Shaheen S (2016) Synthesis, characterization, electrical and dielectrical studies of Polypyrrole-Sn(IV)arsenotungstate nanocomposite ion-exchange membrane: its selectivity as Ba(II). J Mol Liq 221:999–1007CrossRefGoogle Scholar
  41. 41.
    Karthik R, Meenakshi S (2014) Removal of hexavalent chromium ions using polyaniline/silica gel composite. J Water Process Eng 1:37–45CrossRefGoogle Scholar
  42. 42.
    Yalcinkaya S, Cakmak D (2017) Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films. J Mol Struct 1135:32–43CrossRefGoogle Scholar
  43. 43.
    Reddy KR, Karthik RV, Benaka Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174CrossRefGoogle Scholar
  44. 44.
    Reddy KR, Lee KP, Gopalan AI (2007) Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7:3117–3125CrossRefGoogle Scholar
  45. 45.
    Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. Journal of Applied Polymer Science 104:2743–2750CrossRefGoogle Scholar
  46. 46.
    Reddy KR, Lee KP, Gopalan AI (2007) Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphtalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci 106:1181–1191CrossRefGoogle Scholar
  47. 47.
    Reddy KR, Lee KP, Gopalan AI, Showkat AM (2006) Facile synthesis of hollow spheres of sulfonated polyanilines. Polym J 38:349–354CrossRefGoogle Scholar
  48. 48.
    Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer-metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818CrossRefGoogle Scholar
  49. 49.
    Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem Part A 48:1477–1484CrossRefGoogle Scholar
  50. 50.
    Castillo-Ortega MM, Santos-Sauceda I, Encinas JC, Rodriguez-Felix DE, Del Castillo-Castro T, Rodriguez-Felix F, Valenzuela-Garcia JL, Quiroz-Castillo LS, Herrera-Franco PJ (2011) Adsorption and desorption of a gold–iodide complex onto cellulose acetate membrane coated with polyaniline or polypyrrole: a comparative study. J Mater Sci 46:7466–7474CrossRefGoogle Scholar
  51. 51.
    Tan Y, Zhang Y, Kong L, Kong L, Ran F (2017) Nano-Au@PANI core-shell nanoparticles via in-situ polymerization as electrode for supercapacitor. J Alloy Compd 722:1–7CrossRefGoogle Scholar
  52. 52.
    Bogdanovic U, Vodnik VV, Ahrenkiel SP, Stoiljkovic M, Ciric-Marjanovic G, Nedeljkovic JM (2014) Interfacial synthesis and characterization of gold/polyaniline nanocomposites. Synth Met 195:122–131CrossRefGoogle Scholar
  53. 53.
    Chen Y, Kang G, Xu H, Kang L (2017) PPy doped with different metal sulphate as electrode materials for supercapacitors. Russ J Electrochem 53:359–365CrossRefGoogle Scholar
  54. 54.
    Velhal NB, Patil ND, Puri VR (2015) In situ polymerization and characterization of highly conducting polypyrrole fish scales for high-frequency applications. J Electron Mater 44:4669–4675CrossRefGoogle Scholar
  55. 55.
    Ali SR, Parajuli RR, Balogun Y, Ma Y, He H (2008) A nonoxidative electrochemical sensor base don a self-doped polyaniline/carbón nanotube composite for sensitive and selective detection of the neurotransmitter dopamine: a review. Sensors 8:8423–8452CrossRefGoogle Scholar
  56. 56.
    Yuan Y, Lee TR. Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques, vol 51, no 1. Springer, Berlin, pp 3–34Google Scholar
  57. 57.
    Inoue M, Castillo-Ortega MM, Inoue MB (1997) Polyaniline toluenesulfonates: X-ray diffraction and electrical conductivity. Pure Appl Chem A 34(8):1493–1497Google Scholar
  58. 58.
    Chougule MA, Pawar SG, Godse PR, Mulik RN, Sen S (2011) Patil VB Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10CrossRefGoogle Scholar
  59. 59.
    Khan AA, Alam MM, Mohammad F (2003) Ion-exchange kinetics and electrical conductivity studies of polyaniline Sn(IV) tungstoarsenate; (SnO2)(WO3)(As2O5)4(–C6H5–NH–)2nH2O: a new semi-crystalline “polymeric-inorganic” composite cation-exchange material. Electrochim Acta 48:2463–2472CrossRefGoogle Scholar
  60. 60.
    Ramesan MT (2013) Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci 128(3):1540–1546Google Scholar
  61. 61.
    Lira MA, Navarro R, Saucedo I, Martínex M, Guibal E (2016) Influence of the textural characteristics of the support on Au(III) sorption from HCl solutions using Cyphos IL101-impregnated Amberlite resins. Chem Eng J 302:426–436CrossRefGoogle Scholar
  62. 62.
    Riveros PA (1993) Selectivity aspects of the extraction of gold from cyanide solutions with ion exchange resins. Hydrometallurgy 33:43–58CrossRefGoogle Scholar
  63. 63.
    Shorrock CJ, Jong H, Batchelor RJ, Leznoff DB (2003) [Au(CN)4]—as a supramolecular building block for heterobimetallic coordination polymers. Inorg Chem 42:3917–3924CrossRefGoogle Scholar
  64. 64.
    Snyders CA, Bradshaw SM, Akdogan G, Eksteen JJ (2014) The effect of temperature, cyanide and base metals on the adsorption of Pt, Pd and Au onto active carbon. Hydrometallurgy 149:132–142CrossRefGoogle Scholar
  65. 65.
    Santos-Sauceda I, Castillo-Ortega MM, Munive GT, Quiroz-Castillo JM, Del Castillo-Castro T, Encinas-Romero MA, Aguilar-Vega M, Ramírez JZ, Quiroz-Castillo LS (2016) Selective adsorption of metallic complex using polyaniline or polypyrrole. Mater Chem Phys 182:39–48CrossRefGoogle Scholar
  66. 66.
    Basha S, Murthy ZVP, Jha B (2009) Sorption of Hg(II) onto Carica papaya: experimental studies and design of batch sorber. Chem Eng J 147:226–234CrossRefGoogle Scholar
  67. 67.
    Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Mod 19:1–32CrossRefGoogle Scholar
  68. 68.
    Stewart JJP (2012) MOPAC, stewart computational chemistry. Version 13.331W Web. http://OpenMOPAC.net. Accessed 16 May 2016
  69. 69.
    Maia JDC, Carvalho GAU, Mangueira CP, Santana SR, Cabral LAF, Rocha GB (2012) GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J Chem Theory Comput 8:3072–3081CrossRefGoogle Scholar
  70. 70.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:1–17CrossRefGoogle Scholar
  71. 71.
    Chiban M, Carja G, Lehutu G, Sinan F (2016) Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents. Arab J Chem 9:S988–S999CrossRefGoogle Scholar
  72. 72.
    Xin Q, Fu J, Chen Z, Liu S, Yan Y, Zhang J, Xu Q (2015) Polypyrrole nanofibers as a high-efficient adsorbent for the removal of methyl orange from aqueous solution. J Environ Chem Eng 3:1637–1647CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Salvador Rascón-Leon
    • 1
  • María Mónica Castillo-Ortega
    • 1
  • Irela Santos-Sauceda
    • 1
  • Guillermo Tiburcio Munive
    • 2
  • Dora Evelia Rodriguez-Felix
    • 1
  • Teresa Del Castillo-Castro
    • 1
  • José Carmelo Encinas
    • 1
  • Jesús Leobardo Valenzuela-García
    • 2
  • Jesús Manuel Quiroz-Castillo
    • 3
  • Beatriz García-Gaitan
    • 4
  • Pedro Jesús Herrera-Franco
    • 5
  • Jesús Alvarez-Sanchez
    • 6
  • José Zeferino Ramírez
    • 1
  • Luis Sergio Quiroz-Castillo
    • 7
  1. 1.Departamento de Investigación en Polímeros y MaterialesUniversidad de SonoraHermosilloMexico
  2. 2.Departamento de Ingeniería Química y MetalurgiaUniversidad de SonoraHermosilloMexico
  3. 3.Universidad Estatal de SonoraHermosilloMexico
  4. 4.División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico de TolucaMetepecMexico
  5. 5.Centro de Investigación Científica de YucatánMéridaMexico
  6. 6.Departamento de Ciencias del Agua y Medio AmbienteInstituto Tecnológico de SonoraCiudad ObregónMexico
  7. 7.Department of Materials EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations