Polymer Bulletin

, Volume 75, Issue 7, pp 3053–3067 | Cite as

Controlled release profile of 5-fluorouracil loaded P(AAM-co-NVP-co-DEAEMA) microgel prepared via free radical precipitation polymerization

  • Zehra Özbaş
  • Bengi Özkahraman
  • Ayça Bal Öztürk
Original Paper


A new microgel was prepared by free radical precipitation polymerization of acrylamide (AAM), 1-vinyl-2-pyrrolidone (NVP) and 2-(diethylamino)ethyl methacrylate (DEAEMA) to be used for the controlled drug release. The zeta-potential and particle size of P(AAM-co-NVP-co-DEAEMA) microgel were measured by dynamic light scattering (DLS) measurements and found to be around − 36.4 ± 6.29 mV and 592 nm, respectively. P(AAM-co-NVP-co-DEAEMA) microgel was loaded with 5-Fluorouracil (5-Fu) as a model drug. In vitro drug release profiles demonstrated that 5-Fu release from P(AAM-co-NVP-co-DEAEMA) microgel at pH 7.4 was much faster than at pH 5.5 and pH 2.1. In addition, release kinetic studies showed that P(AAM-co-NVP-co-DEAEMA) microgel fit into Higuchi model release. The cytotoxicity study indicated that P(AAM-co-NVP-co-DEAEMA) microgel did not exhibit apparent cytotoxicity against L929 cell line. When all of the results were evaluated, it can be seen that P(AAM-co-NVP-co-DEAEMA) microgel can be effectively used as a polymeric drug carrier for the potential drug delivery systems in medical applications.


2-(Diethylamino)ethyl methacrylate Microgel Precipitation polymerization Controlled release 5-Fluorouracil 



The authors wish to thank Prof. Dr. Gamze Güçlü, Assoc. Prof. Dr. Işıl Acar and Assoc. Prof. Dr. Serkan Emik for their support. The present work was financially supported by the Research Fund of the Hitit University, Project no. MUH19002.14.004.


  1. 1.
    Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly (N-vinylcaprolactam) versus poly (N-isopropylacrylamide). J Polym Chemistry 3(4):852–856CrossRefGoogle Scholar
  2. 2.
    Oh JK, Drumright R, Siegwart DJ (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477CrossRefGoogle Scholar
  3. 3.
    Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Microgels: From responsive polymer colloids to biomaterials. R Adv Colloid Interfac 147:251–262CrossRefGoogle Scholar
  4. 4.
    Bütün V, Atay A, Tuncer C, Baş Y (2011) Novel multiresponsive microgels: synthesis and characterization studies. Langmuir 27:12657–12665CrossRefGoogle Scholar
  5. 5.
    Lyon LA, Meng Z, Singh N, Sorrell CD, John AS (2009) Thermoresponsive microgel-based materials. Chem Soc Rev 38:865–874CrossRefGoogle Scholar
  6. 6.
    Omura T, Ebara M, Lai JJ, Yin X, Hoffman AS, Stayton PS (2014) Design of smart nanogels that respond to physiologically relevant pH values and temperatures. J Nanosci Nanotechnol 14(3):2557–2562CrossRefGoogle Scholar
  7. 7.
    Goh EC, Stöver HD (2002) Cross-linked poly (methacrylic acid-co-poly (ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization: a morphology study. Macromolecules 35(27):9983–9989CrossRefGoogle Scholar
  8. 8.
    Jańczewski D, Tomczak N, Han MY, Vancso GJ (2009) Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST. Eur Polymer J 45(7):1912–1917CrossRefGoogle Scholar
  9. 9.
    Panayiotou M, Pöhner C, Vandevyver C, Wandrey C, Hilbrig F, Freitag R (2007) Synthesis and characterisation of thermo-responsive poly (N, N′-diethylacrylamide) microgels. React Funct Polym 67(9):807–819CrossRefGoogle Scholar
  10. 10.
    Kan X, Zhao Q, Zhang Z, Wang Z, Zhu JJ (2008) Molecularly imprinted polymers microsphere prepared by precipitation polymerization for hydroquinone recognition. Talanta 75:22–26CrossRefGoogle Scholar
  11. 11.
    Jones CD, Lyon LA (2003) Shell-restricted swelling and core compression in poly (N-isopropylacrylamide) core-shell microgels. Macromolecules 36:1988–1993CrossRefGoogle Scholar
  12. 12.
    Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33:8301–8306CrossRefGoogle Scholar
  13. 13.
    Debord JD, Lyon LA (2003) Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir 19:7662–7664CrossRefGoogle Scholar
  14. 14.
    Boyko V, Pich A, Lu Y, Richter S, Arndt KF, Adler HJP (2003) Thermo-sensitive poly (N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1—synthesis and characterization. Polymer 44:7821–7827CrossRefGoogle Scholar
  15. 15.
    Balaceanu A, Mayorga V, Lin W, Schürings MP, Demco DE, Böker A, Pich A (2013) Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium. Colloid Polym Sci 291:21–31CrossRefGoogle Scholar
  16. 16.
    Mazied NA, Ismail SA, Taleb MFA (2009) Radiation synthesis of poly [(dimethylaminoethyl methacrylate)-co-(ethyleneglycol dimethacrylate)] hydrogels and its application as a carrier for anticancer delivery. Radiat Phys Chem 78:899–905CrossRefGoogle Scholar
  17. 17.
    Amalvy JI, Wanless EJ, Li Y, Michailidou V, Armes SP, Duccini Y (2004) Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir 20:8992–8999CrossRefGoogle Scholar
  18. 18.
    Qin S, Yang S, Discher D, Geng Y (2006) Thermo-responsive block co-polymers, and use thereof. U.S. Patent, 12/086,680Google Scholar
  19. 19.
    Zha L, Hu J, Wang C, Fu S, Elaissari A, Zhang Y (2002) Preparation and characterization of poly (N-isopropylacrylamide-co-dimethylaminoethyl methacrylate) microgel latexes. Colloid Polym Sci 280:1–6CrossRefGoogle Scholar
  20. 20.
    Tunc Y, Ulubayram K (2009) Production of highly crosslinked microspheres by the precipitation polymerization of 2-(diethylamino) ethyl methacrylate with two or three functional crosslinkers. J Appl Polym Sci 112:532–540CrossRefGoogle Scholar
  21. 21.
    Wang Q, Zhao Y, Yang Y, Xu H, Yang X (2007) Thermosensitive phase behavior and drug release of in situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci 285:515–521CrossRefGoogle Scholar
  22. 22.
    Lou S, Gao S, Wang W, Zhang M, Zhang Q, Wang C, Li C, Kong D (2014) Temperature/pH dual responsive microgels of crosslinked poly(N-vinylcaprolactam-co-undecenoic acid) as biocompatible materials for controlled release of doxorubicin. J Appl Polym Sci 131:41146CrossRefGoogle Scholar
  23. 23.
    Wang Y, Nie J, Chang B, Sun Y, Yang W (2013) Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromol 14:3034–3046CrossRefGoogle Scholar
  24. 24.
    Puici F, Iemma F, Muzzalupo R, Spizzirri UG, Trombino S, Cassano R, Picci N (2004) Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine. Macromol Biosci 4:22–26CrossRefGoogle Scholar
  25. 25.
    Rao KM, Rao KSV, Sudhakar P, Rao KC, Subha MCS (2013) Synthesis and characterization of biodegradable poly (Vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. J Appl Pharm Sci 3(6):061–069Google Scholar
  26. 26.
    Babu VR, Sairam M, Hosamani KM, Aminabhavi TM (2006) Development of 5-fluorouracil loaded poly (acrylamide-co-methylmethacrylate) novel core–shell microspheres: in vitro release studies. Int J Pharm 325:55–62CrossRefGoogle Scholar
  27. 27.
    Wang Q, Xu H, Yang X, Yang Y (2008) Drug release behavior from in situ gelatinized thermosensitive nanogel aqueous dispersions. Int J Pharm 361:189–193CrossRefGoogle Scholar
  28. 28.
    Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113CrossRefGoogle Scholar
  29. 29.
    Bal A, Özkahraman B, Özbaş Z (2016) Preparation and characterization of pH responsive poly (methacrylic acid-acrylamide-N-hydroxyethyl acrylamide) hydrogels for drug delivery systems. J Appl Polym Sci 133:43226CrossRefGoogle Scholar
  30. 30.
    Park SE, Nho YC, Lim YM, Kim HI (2004) Preparation of pH-sensitive poly (vinyl alcohol-g-methacrylic acid) and poly (vinyl alcohol-g-acrylic acid) hydrogels by gamma ray irradiation and their insulin release behavior. J Appl Polym Sci 91:636–643CrossRefGoogle Scholar
  31. 31.
    Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35CrossRefGoogle Scholar
  32. 32.
    Sudhakar K, Rao KM, Subha MCS, Rao KC, Sadiku ER (2015) Development of dual responsive 5-fluorouracil loaded poly (N-vinylcaprolactam) based nanogels for targeted drug delivery applications. Polym Sci Ser B 57:638–644CrossRefGoogle Scholar
  33. 33.
    Rivas BL, Pooley SA, Soto MAURO, Geckeler KE (1999) Water-soluble copolymers of 1-vinyl-2-pyrrolidone and acrylamide derivatives: synthesis, characterization, and metal binding capability studied by liquid-phase polymer-based retention technique. J Appl Polym Sci 72(6):741–750CrossRefGoogle Scholar
  34. 34.
    Sutar PB, Mishra RK, Pal K, Banthia AK (2008) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci-Mater M 19:2247–2253CrossRefGoogle Scholar
  35. 35.
    Xiong L, Jiang HW, Wang DZ (2009) Synthesis, characterization and degradation of poly (dl-lactide)-block-polyvinylpyrrolidone-block-poly (dl-lactide) copolymers. J Polym Res 16:191–197CrossRefGoogle Scholar
  36. 36.
    Moshaverinia A, Roohpour N, Billington RW, Darr JA, Rehman IU (2008) Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cements. J Mater Sci-Mater M 19:2705–2711CrossRefGoogle Scholar
  37. 37.
    Erdemi H, Bozkurt A (2004) Synthesis and characterization of poly (vinylpyrrolidone-co-vinylphosphonic acid) copolymers. Eur Polym J 40:1925–1929CrossRefGoogle Scholar
  38. 38.
    Bousquet A, Ibarboure E, HÉRoguez V, Papon E, Labrugere C, Rodríguez-Hernández J (2010) J Polym Sci Pol Chem 48:3523–3533CrossRefGoogle Scholar
  39. 39.
    Ferraz CC, Varca GH, Ruiz JC, Lopes PS, Mathor MB, Lugão AB, Bucio E (2014) Radiation-grafting of thermo-and pH-responsive poly (N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiat Phys Chem 97:298–303CrossRefGoogle Scholar
  40. 40.
    Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 12:265–273Google Scholar
  41. 41.
    Kumar MNVR (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Sci 3(2):234–258Google Scholar
  42. 42.
    Yu CY, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX (2008) Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int J Pharm 357:15–21CrossRefGoogle Scholar
  43. 43.
    Manuja A, Kumar S, Dilbaghi N, Bhanjana G, Chopra M, Kaur H, Yadav SC (2014) Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine 9:1625–1634CrossRefGoogle Scholar
  44. 44.
    McNeil SE (2011) Characterization of nanoparticles intended for drug delivery Hatfield. Hertfordshire, UKCrossRefGoogle Scholar
  45. 45.
    Rao KM, Mallikarjuna B, Rao KK, Siraj S, Rao KC, Subha MCS (2013) Novel thermo/pH sensitive nanogels composed from poly (N-vinylcaprolactam) for controlled release of an anticancer drug. Colloid Surf B 102:891–897CrossRefGoogle Scholar
  46. 46.
    Huang L, Sui W, Wang Y, Jiao Q (2010) Preparation of chitosan/chondroitin sulfate complex microcapsules and application in controlled release of 5-fluorouracil. Carbohyd Polym 80:168–173CrossRefGoogle Scholar
  47. 47.
    Zhu L, Ma J, Jia N, Zhao Y, Shen H (2009) Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloid Surf B 68:1–6CrossRefGoogle Scholar
  48. 48.
    Sairam M, Babu VR, Naidu BVK, Aminabhavi TM (2006) Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm 320:131–136CrossRefGoogle Scholar
  49. 49.
    Li P, Xu R, Wang W, Li X, Xu Z, Yeung KW, Chu PK (2013) Thermosensitive poly (N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloid Surf B 101:251–255CrossRefGoogle Scholar
  50. 50.
    Xu J, Xu B, Shou D, Xia X, Hu Y (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7:1850–1870CrossRefGoogle Scholar
  51. 51.
    Llabot JM, Manzo RH, Allemandi DA (2004) Drug release from carbomer: carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system. Int J Pharm 276:59–66CrossRefGoogle Scholar
  52. 52.
    Prabakaran D, Singh P, Kanaujia P, Vyas SP (2003) Effect of hydrophilic polymers on the release of diltiazem hydrochloride from elementary osmotic pumps. Int J Pharm 259:173–179CrossRefGoogle Scholar
  53. 53.
    Barakat NS, Almurshedi AS (2011) Design and development of gliclazide-loaded chitosan microparticles for oral sustained drug delivery: in vitro/in vivo evaluation. J Pharm Pharmacol 63:169–178CrossRefGoogle Scholar
  54. 54.
    Zhao C, Chen Q, Patel K, Li L, Li X, Wang Q, Zheng J (2012) Synthesis and characterization of pH-sensitive poly (N-2-hydroxyethyl acrylamide)–acrylic acid (poly (HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter 8:7848–7857CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zehra Özbaş
    • 1
  • Bengi Özkahraman
    • 2
  • Ayça Bal Öztürk
    • 3
  1. 1.Department of Chemical Engineering, Faculty of EngineeringÇankırı Karatekin UniversityÇankırıTurkey
  2. 2.Department of Polymer Engineering, Faculty of EngineeringHitit UniversityÇorumTurkey
  3. 3.Faculty of Pharmacyİstinye UniversityZeytinburnu, İstanbulTurkey

Personalised recommendations