Skip to main content
Log in

The role of stearic acid for silver nanoparticle formation on graphene and its composite with poly(lactic acid)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Graphene-based polymer nanocomposites have received much attention in the field of new hybrid materials, and in the enhancement of properties and diversification of applications. In this work, reduced graphene (rGO) and silver nanoparticles (AgNPs) were cooperated with poly(lactic acid) (PLA) (a semi-crystalline and brittle polymer) to improve mechanical strength and conductivity of the composites. The effect of various concentrations of stearic acid (SA—a precursor) on the formation of silver nanoparticles on graphene and its composite with PLA was studied for the first time. The rGO and AgNPs were first prepared using SA to enhance the AgNPs formation and improve surface wetting of rGO/AgNPs in PLA. The XPS atomic concentration of AgNPs in rGO-Ag-SA1 composite (1:1 mass ratio of SA: graphene oxide) was 5.77%, while, 2.55% in the rGO-Ag composite without SA. This enhancement is due to substitution of AgNPs onto the epoxy and hydroxyl groups on the graphene sheet. In addition, tensile strength of PLA–rGO–AgNPs–SA was higher than neat PLA when AgNPs and SA were added into the composites, especially the composite of PLA–rGO–Ag–SA1 which showed the highest strength increase of 47%. The volume resistivity of PLA–rGO–Ag–SA1 film was also two times lower than PLA–rGO–Ag; thus, this graphene-based composite of PLA–rGO–Ag showed a significant advantage for applications where antistatic properties are required along with an improvement of PLA’s tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. doi:10.1021/nl802558y

    Article  CAS  PubMed  Google Scholar 

  2. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. doi:10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  3. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907. doi:10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Liu Z, Lew WS, Wang QJ (2013) Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res Lett 8(1):335. doi:10.1186/1556-276x-8-335

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces 4(5):2630–2636. doi:10.1021/am300297j

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60(5):816–822. doi:10.1002/pi.3025

    Article  CAS  Google Scholar 

  8. Seyyed Monfared Zanjani J, Saner Okan B, Menceloglu Y (2016) Manufacturing of multilayer graphene oxide/poly(ethylene terephthalate) nanocomposites with tunable crystallinity, chain orientations and thermal transitions. Mater Chem Phys 176:58–67. doi:10.1016/j.matchemphys.2016.03.020

    Article  CAS  Google Scholar 

  9. Ping F, Lei W, Jintao Y, Feng C, Mingqiang Z (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23(36):365702

    Article  CAS  Google Scholar 

  10. Chartarrayawadee W, Molloy R, Ratchawet A, Janmee N, Butsamran M, Panpai K (2015) Fabrication of poly(lactic acid)/graphene oxide/stearic acid composites with improved tensile strength. Polym Compos. doi:10.1002/pc.23809 (in press)

    Article  Google Scholar 

  11. Grijpma DW, Pennings AJ (1994) (Co)polymers of l-lactide, 2. Mechanical properties. Macromol Chem Phys 195(5):1649–1663. doi:10.1002/macp.1994.021950516

    Article  CAS  Google Scholar 

  12. Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43. doi:10.1002/(SICI)1097-4628(19960103)59:1<37:AID-APP6>3.0.CO;2-N

    Article  CAS  Google Scholar 

  13. Tawakkal ISMA, Cran MJ, Miltz J, Bigger SW (2014) A review of poly(Lactic Acid)-based materials for antimicrobial packaging. J Food Sci 79(8):R1477–R1490. doi:10.1111/1750-3841.12534

    Article  CAS  PubMed  Google Scholar 

  14. Lee D-Y, Lee SH, Cho MS, Nam JD, Lee Y (2015) Facile fabrication of highly flexible poly(lactic acid) film using alternate multilayers of poly[(butylene adipate)-co-terephthalate]. Polym Int 64(4):581–585. doi:10.1002/pi.4848

    Article  CAS  Google Scholar 

  15. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos B Eng 56:717–723. doi:10.1016/j.compositesb.2013.09.012

    Article  CAS  Google Scholar 

  16. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571. doi:10.1111/j.1541-4337.2010.00126.x

    Article  CAS  Google Scholar 

  17. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  PubMed Central  Google Scholar 

  18. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262. doi:10.1016/j.ijbiomac.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  19. Butt MS, Bai J, Wan X, Chu C, Xue F, Ding H, Zhou G (2017) Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding. Mater Sci Eng C 70 Part1:141–147. doi:10.1016/j.msec.2016.08.051

    Article  CAS  Google Scholar 

  20. Pal N, Dubey P, Gopinath P, Pal K (2017) Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int J Biol Macromol 95:94–105. doi:10.1016/j.ijbiomac.2016.11.041

    Article  CAS  PubMed  Google Scholar 

  21. Gonçalves C, Pinto A, Machado AV, Moreira J, Gonçalves IC, Magalhães F (2016) Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets. Polym Compos. doi:10.1002/pc.24050 (in press)

    Article  Google Scholar 

  22. Chieng B, Ibrahim N, Yunus W, Hussein M, Then Y, Loo Y (2014) Effects of graphene nanoplatelets and reduced graphene oxide on poly(lactic acid) and plasticized poly(lactic acid): a Comparative Study. Polymers 6(8):2232

    Article  CAS  Google Scholar 

  23. Chartarrayawadee W, Moulton SE, Li D, Too CO, Wallace GG (2012) Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochim Acta 60:213–223. doi:10.1016/j.electacta.2011.11.058

    Article  CAS  Google Scholar 

  24. Pocklanova R, Rathi AK, Gawande MB, Datta KKR, Ranc V, Cepe K, Petr M, Varma RS, Kvitek L, Zboril R (2016) Gold nanoparticle-decorated graphene oxide: synthesis and application in oxidation reactions under benign conditions. J Mol Catal A Chem 424:121–127. doi:10.1016/j.molcata.2016.07.047

    Article  CAS  Google Scholar 

  25. Wang H, Wang H, Li T, Ma J, Li K, Zuo X (2017) Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sens Actuators B Chem 239:1205–1212. doi:10.1016/j.snb.2016.08.143

    Article  CAS  Google Scholar 

  26. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR (2016) Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B 162:500–510. doi:10.1016/j.jphotobiol.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  27. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536. doi:10.1016/j.talanta.2016.07.034

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C, Li L, Ju J, Chen W (2016) Electrochemical sensor based on graphene-supported tin oxide nanoclusters for nonenzymatic detection of hydrogen peroxide. Electrochim Acta 210:181–189. doi:10.1016/j.electacta.2016.05.151

    Article  CAS  Google Scholar 

  29. Xie Y-L, Zhao S-Q, Ye H-L, Yuan J, Song P, Hu S-Q (2015) Graphene/CeO2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II). J Electroanal Chem 757:235–242. doi:10.1016/j.jelechem.2015.09.043

    Article  CAS  Google Scholar 

  30. Liu XY, Chen H, Peng JH, Zhang JX (2016) One-pot synthesis of close-packed titanium dioxides on graphene oxides. Ceram Int 42(9):11478–11481. doi:10.1016/j.ceramint.2016.04.007

    Article  CAS  Google Scholar 

  31. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD (2012) Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces 4(12):7007–7010. doi:10.1021/am3022569

    Article  CAS  PubMed  Google Scholar 

  32. Baccarin M, Janegitz BC, Berté R, Vicentini FC, Banks CE, Fatibello-Filho O, Zucolotto V (2016) Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. Mater Sci Eng, C 58:97–102. doi:10.1016/j.msec.2015.08.013

    Article  CAS  Google Scholar 

  33. da Silva Pereira B, Silva MF, Bittencourt PRS, de Oliveira DMF, Pineda EAG, Hechenleitner AAW (2015) Cellophane and filter paper as cellulosic support for silver nanoparticles and its thermal decomposition catalysis. Carbohydr Polym 133:277–283. doi:10.1016/j.carbpol.2015.06.108

    Article  CAS  PubMed  Google Scholar 

  34. Viswanathan P, Ramaraj R (2016) Polyelectrolyte assisted synthesis and enhanced catalysis of silver nanoparticles: electrocatalytic reduction of hydrogen peroxide and catalytic reduction of 4-nitroaniline. J Mol Catal A: Chem 424:128–134. doi:10.1016/j.molcata.2016.08.001

    Article  CAS  Google Scholar 

  35. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  36. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. doi:10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  37. Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360(2):463–470. doi:10.1016/j.jcis.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Liu C-Y (2010) Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 8:1244–1248. doi:10.1002/ejic.200901048

    Article  CAS  Google Scholar 

  39. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. doi:10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  40. Chartarrayawadee W, Moulton S, Too C, Kim B, Yepuri R, Romeo T, Wallace G (2013) Facile synthesis of reduced graphene oxide/MWNTs nanocomposite supercapacitor materials tested as electrophoretically deposited films on glassy carbon electrodes. J Appl Electrochem 43(9):865–877. doi:10.1007/s10800-013-0575-9

    Article  CAS  Google Scholar 

  41. Yuan W, Gu Y, Li L (2012) Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci 261:753–758. doi:10.1016/j.apsusc.2012.08.094

    Article  CAS  Google Scholar 

  42. Tang X-Z, Li X, Cao Z, Yang J, Wang H, Pu X, Yu Z-Z (2013) Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon 59:93–99. doi:10.1016/j.carbon.2013.02.058

    Article  CAS  Google Scholar 

  43. Blythe AR (1984) Measurement techniques for polymeric solids electrical resistivity measurements of polymer materials. Polym Test 4(2):195–209. doi:10.1016/0142-9418(84)90012-6

    Article  CAS  Google Scholar 

  44. Jakubas A, Jabłoński P (2015) Modeling of four-electrode system to determine the resistance of antistatic coatings—optimizing the size of the measurement area. J Electrostat 77:130–138. doi:10.1016/j.elstat.2015.08.002

    Article  CAS  Google Scholar 

  45. Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Grácio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21(20):4796–4802. doi:10.1021/cm901052s

    Article  CAS  Google Scholar 

  46. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU Jr (1999) Surface characterization of electrochemically oxidized carbon fibers. Carbon 37(11):1785–1796. doi:10.1016/S0008-6223(99)00047-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and the University of Phayao for their financial support. Funding was provided by National Research Council of Thailand (Grant No. R020057316011)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Widsanusan Chartarrayawadee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chartarrayawadee, W., Too, C.O., Ross, S. et al. The role of stearic acid for silver nanoparticle formation on graphene and its composite with poly(lactic acid). Polym. Bull. 75, 3171–3187 (2018). https://doi.org/10.1007/s00289-017-2200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2200-2

Keywords

Navigation