Skip to main content
Log in

Synthesis and CO2 permeation properties of novel sulfonium-substituted poly(diphenylacetylene)s

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Substitution of thiourea to poly(diphenylacetylene) having 2-bromoethoxy groups (2a) gave an sulfonium-containing poly(diphenylacetylene) [3a (Br )]. The counteranions of 3a (Br ) could be exchanged using CF3COOK and (CF3SO2)2NLi, and the polymers 3a (TFAc ) and 3a (Tf 2 N ) were obtained. Polymer 3a (Br ) was hydrolyzed with NaOHaq to afford the polymer 4a possessing mercapto groups. The CO2 permeability coefficients (\(P_{{{\text{CO}}_{ 2} }}\)) and the separation factor (\(P_{{{\text{CO}}_{ 2} }} /P_{{{\text{N}}_{ 2} }}\)) of 3a (Br ) were 15 barrers and 16, respectively. The selectivity was low compared to the analogous polymer, poly(diphenylacetylene) having imidazolium salts (\(P_{{{\text{CO}}_{ 2} }} /P_{{{\text{N}}_{ 2} }} = 4 4\)), because 3a (Br ) interacted strongly with CO2, and the diffusion of CO2 was suppressed. The \(P_{{{\text{CO}}_{ 2} }}\) and \(P_{{{\text{CO}}_{ 2} }} /P_{{{\text{N}}_{ 2} }}\) of 3a (TFAc ) were 43 barrers and 24, respectively, and those of 3a (Tf 2 N ) were 52 barrers and 26, respectively. Both permeability and selectivity increased as the counteranion became bulkier. The mercapto group containing poly(diphenylacetylene) (4a) showed a relatively high CO2 permeability (\(P_{{{\text{CO}}_{ 2} }} = 1 30\) barrers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Masuda T, Isobe E, Higashimura T, Takada K (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition metal catalysts and characterization by extremely high gas permeability. J Am Chem Soc 105:7473–7474

    Article  CAS  Google Scholar 

  2. Tsuchihara K, Masuda T, Higashimura T (1991) Tractable silicon-containing poly(diphenylacetylenes): their synthesis and high gas permeability. J Am Chem Soc 113:8548–8589

    Article  CAS  Google Scholar 

  3. Tsuchihara K, Masuda T, Higashimura T (1992) Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers. Macromolecules 25:5816–5820

    Article  CAS  Google Scholar 

  4. Kouzai H, Masuda T, Higashimura T (1994) Synthesis and properties of poly(diphenylacetylenes) having aliphatic para-substituents. J Polym Sci Part A Polym Chem 32:2523–2530

    Article  CAS  Google Scholar 

  5. Sakaguchi T, Kwak G, Masuda T (2002) Synthesis of poly(1-β-naphthyl-2-phenylacetylene) membranes through desilylation and their properties. Polymer 43:3937–3942

    Article  CAS  Google Scholar 

  6. Sakaguchi T, Shiotsuki M, Masuda T (2004) Synthesis and properties of Si-containing poly(diarylacetylene)s and their desilylated polymer membranes. Macromolecules 37:4104–4108

    Article  CAS  Google Scholar 

  7. Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties, and functions. Prog Polym Sci 26:721–798

    Article  CAS  Google Scholar 

  8. Sakaguchi T, Yumoto K, Shida Y, Shiotsuki M, Sanda F, Masuda T (2006) Synthesis, properties, and gas permeability of novel poly(diarylacetylene) derivatives. J Polym Sci Part A Polym Chem 44:5028–5038

    Article  CAS  Google Scholar 

  9. Shiotsuki M, Sanda F, Masuda T (2011) Polymerization of substituted acetylenes and features of the formed polymers. Polym Chem 2:1044–1058

    Article  CAS  Google Scholar 

  10. Figueroa JD, Fout T, Plasynski S, Mcllvried H, Srivastava RD (2008) Advanced in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenhouse Gas Control 2:9–20

    Article  CAS  Google Scholar 

  11. Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47:6999–7013

    Article  CAS  Google Scholar 

  12. Huang Y, Merkel TC, Baker RW (2014) Pressure ratio and its impact on membrane gas separation processes. J Membr Sci 463:33–40

    Article  CAS  Google Scholar 

  13. Merkel TC, Lin H, Wei X, Baker RW (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139

    Article  CAS  Google Scholar 

  14. Sakaguchi T, Hashimoto T (2014) Synthesis of poly(diphenylacetylene)s bearing various polar groups and their gas permeability. Polym J 46:391–398

    Article  CAS  Google Scholar 

  15. Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chem Eur J 22:1–12

    Article  Google Scholar 

  16. Dai Z, Noble RD, Gin DL, Zhang X, Deng L (2016) Combination of ionic liquids with membrane technology: a new approach for CO2 separation. J Membr Sci 497:1–20

    Article  CAS  Google Scholar 

  17. Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739:57–74

    Article  CAS  Google Scholar 

  18. Sakaguchi T, Kameoka K, Hashimoto T (2008) Synthesis and gas permeability of novel poly(diphenylacetylenes) having polyethylene glycol moieties. Polym Bull 60:441–448

    Article  CAS  Google Scholar 

  19. Sakaguchi T, Kameoka K, Hashimoto T (2009) Synthesis of PEG-functionalized poly(diphenylacetylene)s and their gas permeation properties. J Appl Polym Sci 113:3504–3509

    Article  CAS  Google Scholar 

  20. Sakaguchi T, Kameoka K, Hashimoto T (2009) Synthesis of sulfonated poly(diphenylacetylene)s with high CO2 permselectivity. J Polym Sci Part A Polym Chem 47:6463–6471

    Article  CAS  Google Scholar 

  21. Sakaguchi T, Takeda A, Hashimoto T (2011) Highly gas-permeable silanol-functionalized poly(diphenylacetylene)s: synthesis, characterization, and gas permeation properties. Macromolecules 44:6810–6817

    Article  CAS  Google Scholar 

  22. Sakaguchi T, Shinoda Y, Hashimoto T (2012) A series of poly(diphenylacetylene)s bearing sulfonic acids: synthesis, characterization, and gas permeability. Polymer 53:5268–5274

    Article  CAS  Google Scholar 

  23. Sakaguchi T, Shinoda Y, Hashimoto T (2014) Synthesis and gas permeability of nitrated and aminated poly(diphenylacetylene)s. Polymer 55:6680–6685

    Article  CAS  Google Scholar 

  24. Sakaguchi T, Tsuzuki T, Masuda T, Hashimoto T (2014) Synthesis, gas permeability, and metal-induced gelation of poly(disubstituted acetylene)s having p,m-dimethoxyphenyl and p,m-dihydroxyphenyl groups. Polymer 55:1977–1983

    Article  CAS  Google Scholar 

  25. Sakaguchi T, Ito H, Masuda T, Hashimoto T (2013) Highly CO2-permeable and -permselective poly(diphenylacetylene)s having imidazolium salts: synthesis, characterization, gas permeation properties, and effects of counter anion. Polymer 54:6709–6715

    Article  CAS  Google Scholar 

  26. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48:2739–2751

    Article  CAS  Google Scholar 

  27. Scovazzo P, Kieft J, Finan DA, Koval C, Dubois D, Noble R (2004) Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238:57–63

    Article  CAS  Google Scholar 

  28. Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46:5397–5404

    Article  CAS  Google Scholar 

  29. Carlisle TK, Bara JE, Lafrate AL, Gin DL, Noble RD (2010) Main-chain imidazolium polymer membranes for CO2 separations: an initial study of a new ionic liquid-inspired platform. J Membr Sci 359:37–43

    Article  CAS  Google Scholar 

  30. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Sakaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaguchi, T., Kaji, S. & Hashimoto, T. Synthesis and CO2 permeation properties of novel sulfonium-substituted poly(diphenylacetylene)s. Polym. Bull. 75, 3011–3022 (2018). https://doi.org/10.1007/s00289-017-2195-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2195-8

Keywords

Navigation