Skip to main content

Self-assembled nanostructures from amphiphilic globular protein–polymer hybrids

Abstract

Amphiphilic globular protein–polymer hybrids, consisting of poly(methyl methacrylate) (PMMA) as hydrophobic tail and globular protein as hydrophilic head, are prepared by the end-functional PMMA covalently binding to the primary amino groups of bovine serum albumin (BSA) in the phosphate buffer saline (PBS)/acetone mixture solvents at pH 5. The self-assembly behaviors of amphiphilic BSA–PMMA hybrids are explored in aqueous solution by the dynamic light scatter (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The self-assembled morphologies of the amphiphilic BSA–PMMA hybrids are controlled by the length of hydrophobic PMMA chains. The amphiphilic BSA–PMMA hybrids with the longer hydrophobic PMMA chains self-assembled into spherical vesicles and elongated tubular vesicles, and conversely, they self-assembled into micelles. A vesicle consists of BSA as two outer hydrophilic layers and PMMA as hydrophobic wall.

Graphical Abstract

Amphiphilic globular protein–polymer hybrids consist of PMMA as hydrophobic tail and globular protein BSA as hydrophilic head. Amphiphilic globular protein–polymer hybrids self-assembled into micelles or vesicles in phosphate buffer saline. The self-assembled morphology of amphiphilic protein–polymer hybrids was controlled by adjusting the length of hydrophobic chains.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Maynard HD (2013) Proteins in a pill. Nat Chem 5:557–558

    Article  CAS  PubMed  Google Scholar 

  2. Schacher FH, Rupar PA, Manners I (2012) Functional block copolymers: nanostructured materials with emerging applications. Angew Chem Int Ed 51:7898–7921

    Article  CAS  Google Scholar 

  3. Carlsen A, Lecommandoux S (2009) Self-assembly of polypeptide-based block copolymer amphiphiles. Curr Opin Colloid Interface Sci 14:329–339

    Article  CAS  Google Scholar 

  4. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 281:107–1170

    Google Scholar 

  5. Feng A, Yuan J (2014) Smart nanocontainers: progress on novel stimuli-responsive polymer vesicles. Macromol Rapid Commun 35:767–779

    Article  CAS  PubMed  Google Scholar 

  6. Salimi E, Ghaee A, Ismail AF, Othman MHD, Sean GP (2016) Current approaches in improving hemocompatibility of polymeric membranes for biomedical application. Macromol Mater Eng 301:771–800

    Article  CAS  Google Scholar 

  7. Liu Y, Liu Y, Yin J-J, Nie Z, Ruan Z (2015) Self-assembly of amphiphilic block copolymer-tethered nanoparticles: a new approach to nanoscale design of functional materials. Macromol Rapid Commun 36:711–725

    Article  CAS  PubMed  Google Scholar 

  8. Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X (2016) Polymeric nanostructured materials for biomedical applications. Prog Polym Sci 60:86–128

    Article  CAS  Google Scholar 

  9. Raffa P, Wever DAZ, Picchioni F, Broekhuis AA (2015) Polymeric surfactants: synthesis, properties, and links to applications. Chem Rev 11:8504–8563

    Article  CAS  Google Scholar 

  10. Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, Dong XH, Yue K, Horn RV, Cheng SZD (2014) Molecular nanoparticles are unique elements for macromolecular science: from “nanoatoms” to giant molecules. Macromolecules 4:1221–1239

    Article  CAS  Google Scholar 

  11. Zhang W, Chu Y, Mu GY, Eghtesadi SA, Liu YC, Zhou Z, Lu XL, Kashfipour MA, Lillard RS, Yue K, Liu TB, Cheng SZD (2017) Rationally controlling the self-assembly behavior of triarmed POSS–organic hybrid macromolecules: from giant surfactants to macroions. Macromolecules 50:5042–5050

    Article  CAS  Google Scholar 

  12. Rusen E, Marculescu B, Preda N, Bucur C, Mihut L (2008) Synthesis and optical properties of water-soluble poly(vinylpyrrolidone)-modified fullerene C60. Polym Bull 61:581–592

    Article  CAS  Google Scholar 

  13. He N, Wang R (2012) Self-assembly of protein with polymer. Prog Chem 24:94–100

    CAS  Google Scholar 

  14. Xu Y, Chen M, Xie J, Li C, Yang C, Deng Y, Yuan C, Chang F-C, Dai L (2013) Synthesis, characterization and self-assembly of hybrid pH-sensitive block copolymer containing polyhedral oligomeric silsesquioxane (POSS). React Funct Polym 73:1646–1655

    Article  CAS  Google Scholar 

  15. Chu C-C, Tsai Y-J, Hsiao L-C, Wang L (2011) Controlled self-aggregation of C60-anchored multiarmed polyacrylic acids and their cytotoxicity evaluation. Macromolecules 44:7056–7061

    Article  CAS  Google Scholar 

  16. Reynhout IC, Cornelissen JJLM, Nolte RJM (2009) Synthesis of polymer-biohybrids: from small to giant surfactants. Acc Chem Res 42:681–692

    Article  CAS  PubMed  Google Scholar 

  17. Hamley IW, Castelletto V (2017) Self-assembly of peptide bioconjugates: selected recent research highlights. Bioconjug Chem 28:731–739

    Article  CAS  PubMed  Google Scholar 

  18. Luo Q, Hou CX, Bai YS, Wang RB, Liu JQ (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev 116:13571–13632

    Article  CAS  PubMed  Google Scholar 

  19. Yang G, Zhang X, Kochovski Z, Zhang YF, Dai B, Sakai FJ, Jiang L, Lu Y, Ballauff M, Li XM, Liu C, Chen GS, Jiang M (2016) Precise and reversible protein-microtubule-like structure with helicity driven by dual supramolecular interactions. J Am Chem Soc 138:1932–1937

    Article  CAS  PubMed  Google Scholar 

  20. Yang G, Wu LB, Chen GS, Jiang M (2016) Precise protein assembly of array structures. Chem Commun 52:10595–10605

    Article  CAS  Google Scholar 

  21. Börner HG (2009) Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences. Prog Polym Sci 34:811–851

    Article  CAS  Google Scholar 

  22. He N, Lu S, Zhao W, Du X, Huang S, Wang R (2014) Fabrication of the self-assembly systems based on protein molecules. Prog Chem 26:303–309

    CAS  Google Scholar 

  23. Maassen SJ, van der Ham AM, van der Cornelissen JJLM (2016) Combining protein cages and polymers: from understanding self-assembly to functional materials. ACS Macro Lett 5:987–994

    Article  CAS  Google Scholar 

  24. Le Droumaguet B, Velonia K (2008) In situ ATRP-mediated hierarchical formation of giant amphiphile bionanoreactors. Angew Chem Int Ed 47:6263–6266

    Article  CAS  Google Scholar 

  25. Reynhout IC, Cornelissen JJLM, Nolte RJM (2007) Self-assembled architectures from biohybrid triblock copolymers. J Am Chem Soc 129:2327–2332

    Article  CAS  PubMed  Google Scholar 

  26. Kadir MA, Lee C, Han HS, Kim B-S, Ha E-J, Jeong J, Song JK, Lee S-G, An SSA, Paik H (2013) In situ formation of polymer–protein hybrid spherical aggregates from (nitrilotriacetic acid)-end-functionalized polystyrenes and His-tagged proteins. Polym Chem 4:2286–2296

    Article  CAS  Google Scholar 

  27. Velonia K, Rowan AE, Nolte RJM (2002) Lipase polystyrene giant amphiphiles. J Am Chem Soc 124:4224–4225

    Article  CAS  PubMed  Google Scholar 

  28. Thomas CS, Xu L, Olsen BD (2013) Effect of small molecule osmolytes on the self-assembly and functionality of globular protein–polymer diblock copolymers. Biomacromolecules 14:3064–3072

    Article  CAS  PubMed  Google Scholar 

  29. Lam CN, Yao H, Olsen BD (2016) The effect of protein electrostatic interactions on globular protein–polymer block copolymer self-assembly. Biomacromolecules 17:2820–2829

    Article  CAS  PubMed  Google Scholar 

  30. Lam CN, Yao H, Olsen BD (2012) Kinetically controlled nanostructure formation in self-assembled globular protein–polymer diblock copolymers. Biomacromolecules 13:2781–2792

    Article  CAS  Google Scholar 

  31. Liu Z, Dong C, Wang X, Wang H, Li W, Tan J, Chang J (2014) Self-assembled biodegradable protein–polymer vesicle as a tumor-targeted nanocarrier. ACS Appl Mater Interfaces 6:2393–2400

    Article  CAS  PubMed  Google Scholar 

  32. Wei KC, Li J, Chen GS, Jiang M (2013) Dual molecular recognition leading to a protein–polymer conjugate and further self-assembly. ACS Macro Lett 2:278–283

    Article  CAS  Google Scholar 

  33. Han GD, Wang J-T, Ji XT, Liu L, Zhao HY (2017) Nanoscale proteinosomes fabricated by self-assembly of a supramolecular protein–polymer conjugate. Bioconjug Chem 28:636–641

    Article  CAS  PubMed  Google Scholar 

  34. Jang Y, Champion JA (2016) Self-assembled materials made from functional recombinant proteins. Acc Chem Res 49:2188–2198

    Article  CAS  PubMed  Google Scholar 

  35. Obermeyer AC, Bradley DO (2015) Synthesis and application of protein-containing block copolymers. ACS Macro Lett 4:101–110

    Article  CAS  Google Scholar 

  36. Dong CH, Liu ZY, Wang S, Zheng B, Guo WS, Yang WT, Gong XQ, Wu XL, Wang HJ, Chang J (2016) A protein–polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy. ACS Appl Mater Interfaces 8:32688–32698

    Article  CAS  PubMed  Google Scholar 

  37. He N, Lu Z, Zhao W (2015) pH-responsive double hydrophilic protein–polymer hybrids and their self-assembly in aqueous solution. Colloid Polym Sci 293:3517–3526

    Article  CAS  Google Scholar 

  38. He N, Wang Y, Lu Z (2016) Temperature-responsive “tadpole-shaped” protein–polymer hybrids and their self-assembly behavior. Polym Adv Technol 27:1376–1382

    Article  CAS  Google Scholar 

  39. Pelegri-O’Day EM, Maynard HD (2016) Controlled radical polymerization as an enabling approach for the next generation of protein–polymer conjugates. Acc Chem Res 49:1777–1785

    Article  CAS  PubMed  Google Scholar 

  40. Ashford EJ, Naldi V, O’Dell R, Billingham NC, Armes SP (1999) First example of the atom transfer radical polymerisation of an acidic monomer: direct synthesis of methacrylic acid copolymers in aqueous media. Chem Commun (14):1285–1286. doi:10.1039/A903773J

  41. Wang Y, He N, Lu Z (2017) Synthesis of end-functional and mid-functional temperature-responsive poly (N,N-diethyl-acrylamide) by ATRP. Acta Polym Sin 3:464–470

    Google Scholar 

  42. Hasneen A, Cho I, Kim K-W, Paik H (2012) Synthesis of poly(ethylene glycol)-b-poly(mercapto ethylacrylamide) diblock copolymer via atom transfer radical polymerization. Polym Bull 68:681–691

    Article  CAS  Google Scholar 

  43. Lele BS, Murata H, Matyjaszewski K, Russell AJ (2005) Synthesis of uniform protein–polymer conjugates. Biomacromolecules 6:3380–3387

    Article  CAS  PubMed  Google Scholar 

  44. Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740–4753

    Article  CAS  PubMed  Google Scholar 

  45. Boutureira O, Bernardes GJL (2015) Advances in chemical protein modification. Chem Rev 115:2174–2195

    Article  CAS  PubMed  Google Scholar 

  46. Matsumoto NM, Prabhakaran P, Rome LH, Maynard HD (2013) Smart vaults: thermally-responsive protein nanocapsules. ACS Nano 7:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lavigueur C, Hendriks L, Hoogenboom R, Cornelissen JJLM, Nolte RJM (2011) Thermoresponsive giant biohybrid amphiphiles. Polym Chem 2:333–340

    Article  CAS  Google Scholar 

  48. Wang X, Duan Y, Li C, Lu Y (2015) Synthesis, self-assembly, and formation of polymer vesicle hydrogels of thermoresponsive copolymers. J Mater Sci 50:3541–3548

    Article  CAS  Google Scholar 

  49. Liu G-Y, Chen C-J, Ji J (2012) Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter 8:8811–8821

    Article  CAS  Google Scholar 

  50. Wang H, Zhang M, Ni P, He J, Hao Y, Wu Y (2013) Synthesis of pH-responsive amphiphilic diblock copolymers containing polyisobutylene via oxyanion-initiated polymerization and their multiple self-assembly morphologies. Chin J Polym Sci 31:218–231

    Article  CAS  Google Scholar 

  51. Du J, O’Reilly RK (2009) Advances and challenges in smart and functional polymer vesicles. Soft Matter 5:3544–3561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (21164003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naipu He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., He, N., Wang, Y. et al. Self-assembled nanostructures from amphiphilic globular protein–polymer hybrids. Polym. Bull. 75, 2627–2639 (2018). https://doi.org/10.1007/s00289-017-2176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2176-y

Keywords

  • Amphiphilic protein–polymer hybrids
  • Bovine serum albumin
  • Self-assembly
  • Vesicles
  • Micelles