Skip to main content

Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In this work, the effect of incorporation of glass fiber and nanosilica separately and in combination in a thermoplastic matrix is investigated. Individual micro, nano, and hybrid multiphase composites based on polypropylene were prepared via twin screw extrusion followed by injection molding. The glass fiber content was maintained at 10 wt% and nanosilica level was fixed at 4 wt%. The microstructure of the hybrid composite indicated the presence of nanosilica surrounding the glass fibers. Higher tensile strength and modulus was reported for hybrid composite, followed by micro and nanocomposite. The differential scanning calorimetry studies suggested that the presence of glass fibers could hasten the crystallization of PP in comparison with nanosilica. The thermal degradation studies for hybrid composite exhibited a prominent thermal stability. The delayed diffusion of solvent in hybrid composite was observed due to the confinement regions generated by the combination of micro and nanofillers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Zhang J, Chaisombat K, He S, Wang CH (2012) Glass/carbon fibre hybrid composite laminates for structural applications in automotive vehicles. In: Subic A, Wellnitz J, Leary M, Koopmans L (eds), Sustainable automotive technologies. Proceedings of the 4th International Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 69–74

  2. 2.

    Heinemann MD, von Maydell K, Zutz F, Kolny-Olesiak J, Borchert H, Riedel I et al (2009) Photo-induced charge transfer and relaxation of persistent charge carriers in polymer/nanocrystal composites for applications in hybrid solar cells. Adv Funct Mater 19(23):3788–3795

    Article  CAS  Google Scholar 

  3. 3.

    Gamze Karsli N, Yesil S, Aytac A (2014) Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites. Compos B Eng 63:154–160

    Article  CAS  Google Scholar 

  4. 4.

    Thomason JL, Vlug MA (1996) Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus. Compos A Appl Sci Manuf 27(6):477–484

    Article  Google Scholar 

  5. 5.

    Unterweger C, Brüggemann O, Fürst C (2014) Effects of different fibers on the properties of short-fiber-reinforced polypropylene composites. Compos Sci Technol 103:49–55

    Article  CAS  Google Scholar 

  6. 6.

    Jacob S, Suma KK, Mendaz JM, George A, George KE (2009) Modification of polypropylene/glass fiber composites with nanosilica. Macromol Symp 277(1):138–143

    Article  CAS  Google Scholar 

  7. 7.

    Palza H, Vergara R, Zapata P (2011) Composites of polypropylene melt blended with synthesized silica nanoparticles. Compos Sci Technol 71(4):535–540

    Article  CAS  Google Scholar 

  8. 8.

    Mohan T, Kanny K (2010) Influence of nanoclay on rheological and mechanical properties of short glass fibre reinforced polypropylene composites. J Reinf Plast Compos 30(2):152–160

    Article  CAS  Google Scholar 

  9. 9.

    Rahman NA, Hassan A, Yahya R, Lafia-Araga R, Hornsby P (2012) Polypropylene/glass fiber/nanoclay hybrid composites: morphological, thermal, dynamic mechanical and impact behaviors. J Reinf Plast Compos 31(18):1247–1257

    Article  CAS  Google Scholar 

  10. 10.

    Shazed MA, Suraya AR, Rahmanian S, Salleh MA (2014) Effect of fibre coating and geometry on the tensile properties of hybrid carbon nanotube coated carbon fibre reinforced composite. Mater Des 54:660–669

    Article  CAS  Google Scholar 

  11. 11.

    Taraghi I, Fereidoon A, Zamani MM, Mohyeddin A (2015) Mechanical, thermal, and viscoelastic properties of polypropylene/glass hybrid composites reinforced with multiwalled carbon nanotubes. J Compos Mater 49(28):3557–3566

    Article  CAS  Google Scholar 

  12. 12.

    Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9(4):262

    Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  14. 14.

    Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  CAS  Google Scholar 

  15. 15.

    Tomlal EJ, Thomas PC, George KC, Jayanarayanan K, Joseph K (2010) Impact, tear, and dielectric properties of cotton/polypropylene commingled composites. J Reinf Plast Compos 29(12):1861–1874

    Article  CAS  Google Scholar 

  16. 16.

    Arbelaiz A, Fernández B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36(12):1637–1644

    Article  CAS  Google Scholar 

  17. 17.

    Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63(9):1247–1254

    Article  CAS  Google Scholar 

  18. 18.

    Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. Int J Polym Sci. doi:10.1155/2011/803428

    Article  Google Scholar 

  19. 19.

    Barré S, Benzeggagh M (1994) On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene. Compos Sci Technol 52(3):369–376

    Article  Google Scholar 

  20. 20.

    Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites. Effect of a novel compatibilizer with isocyanate functional group. Compos A Appl Sci Manuf 38(2):227–233

    Article  CAS  Google Scholar 

  21. 21.

    Ramsaroop A, Kanny K, Mohan T (2010) Fracture toughness studies of polypropylene-clay nanocomposites and glass fibre reinfoerced polypropylene composites. Mater Sci Appl 1(05):301

    CAS  Google Scholar 

  22. 22.

    Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  CAS  Google Scholar 

  23. 23.

    Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35(11):1267–1276

    Article  CAS  Google Scholar 

  24. 24.

    Shakeri A, Raghimi M (2010) Studies on mechanical performance and water absorption of recycled newspaper/glass fiber-reinforced polypropylene hybrid composites. J Reinf Plast Compos 29(7):994–1005

    Article  CAS  Google Scholar 

  25. 25.

    Balakrishna NS, Ismail H, Othman N (2014) Polypropylene/rattan powder/kaolin hybrid composites: processing, mechanical and thermal properties. Polym Plast Technol Eng 53(5):451–458

    Article  CAS  Google Scholar 

  26. 26.

    Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties. J Appl Polym Sci 103(4):2432–2441

    Article  CAS  Google Scholar 

  27. 27.

    Lorenz H, Fritzsche J, Das A, Stöckelhuber KW, Jurk R, Heinrich G et al (2009) Advanced elastomer nano-composites based on CNT-hybrid filler systems. Compos Sci Technol 69(13):2135–2143

    Article  CAS  Google Scholar 

  28. 28.

    Yang K, Gu M (2010) Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Compos A Appl Sci Manuf 41(2):215–221

    Article  CAS  Google Scholar 

  29. 29.

    Barus S, Zanetti M, Lazzari M, Costa L (2009) Preparation of polymeric hybrid nanocomposites based on PE and nanosilica. Polymer 50(12):2595–2600

    Article  CAS  Google Scholar 

  30. 30.

    Karsli NG, Aytac A (2011) Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 32(7):4069–4073

    Article  CAS  Google Scholar 

  31. 31.

    Kim J, Kim D (2014) Compatibilizing effects of maleic anhydride-grafted-polypropylene (PP) on long carbon fiber-reinforced PP composites. J Thermoplast Compos Mater 28(11):1599–1611

    Article  CAS  Google Scholar 

  32. 32.

    Krump H, Luyt AS, Hudec I (2006) Effect of different modified clays on the thermal and physical properties of polypropylene-montmorillonite nanocomposites. Mater Lett 60(23):2877–2880

    Article  CAS  Google Scholar 

  33. 33.

    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261

    Article  CAS  Google Scholar 

  34. 34.

    Arao Y, Yumitori S, Suzuki H, Tanaka T, Tanaka K, Katayama T (2013) Mechanical properties of injection-molded carbon fiber/polypropylene composites hybridized with nanofillers. Compos A Appl Sci Manuf 55:19–26

    Article  CAS  Google Scholar 

  35. 35.

    Sattari M, Mirsalehi SA, Khavandi A, Alizadeh O, Naimi-Jamal MR (2015) Non-isothermal melting and crystallization behavior of UHMWPE/SCF/nano-SiO2 hybrid composites. J Therm Anal Calorim 122(3):1319–1330

    Article  CAS  Google Scholar 

  36. 36.

    Tang J, Wang Y, Liu H, Belfiore LA (2004) Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45(7):2081–2091

    Article  CAS  Google Scholar 

  37. 37.

    Layachi A, Frihi D, Satha H, Seguela R, Gherib S (2016) Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J Therm Anal Calorim 124(3):1319–1329

    Article  CAS  Google Scholar 

  38. 38.

    Samal SK, Mohanty S, Nayak SK (2008) Polypropylene–bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. J Reinf Plast Compos 28(22):2729–2747

    Article  CAS  Google Scholar 

  39. 39.

    Li L, Li B, Hood MA, Li CY (2009) Carbon nanotube induced polymer crystallization: the formation of nanohybrid shish–kebabs. Polymer 50(4):953–965

    Article  CAS  Google Scholar 

  40. 40.

    Liang Y, Zheng G, Han W, Liu C, Chen J, Li Q et al (2011) Nano-hybrid shish–kebab: isotactic polypropylene epitaxial growth on electrospun polyamide 66 nanofibers via isothermal crystallization. Mater Lett 65(4):653–656

    Article  CAS  Google Scholar 

  41. 41.

    Jayanarayanan K, Bhagawan SS, Thomas S, Joseph K (2008) Morphology development and non isothermal crystallization behaviour of drawn blends and microfibrillar composites from PP and PET. Polym Bull 60(4):525–532

    Article  CAS  Google Scholar 

  42. 42.

    Jayanarayanan K, Thomas S, Joseph K (2012) Effect of blend ratio on the mechanical and sorption behaviour of polymer–polymer microfibrillar composites from low-density polyethylene and polyethylene terephthalate. J Reinf Plast Compos 31(8):549–562

    Article  CAS  Google Scholar 

Download references


The authors thank Sophisticated Testing and Instrumentation Centre, Kochi, India, and PSG Tech, Coimbatore, India for TEM and SEM analyses.

Author information



Corresponding author

Correspondence to Karingamanna Jayanarayanan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasana, N., Jayanarayanan, K. Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties. Polym. Bull. 75, 2587–2605 (2018).

Download citation


  • Hybrid composite
  • Glass fibers
  • Nanosilica
  • Transcrystallization
  • Permeability