Skip to main content
Log in

Effect of crystallinity on the thermal conductivity of poly(3-hydroxybutyrate)/BN composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research, boron nitride (BN) acting as both nucleating agent and thermally conductive filler was melt-mixed with poly(3-hydroxybutyrate) (PHB). It was assumed that the introduction of BN not only formed thermally conductive pathways to increase the thermal conductivity of PHB, but also reduced the interfacial thermal resistance due to the interaction between BN and PHB. The assumption was confirmed by density test, morphological observation, and rheological tests. Besides, the introduction of BN improved the thermal stability of PHB, as well. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3,4HB) was introduced as a comparison with PHB to illustrate the effect of crystallinity on the thermal conductivity of PHB/BN composites. According to the DSC tests, BN was proved to be a good nucleating agent for both PHB and P3,4HB. As the wide-angle X-ray diffraction analysis results showed that the crystal structure of PHB/BN and P3,4HB/BN composites was the same, the reason that the thermal conductivity of PHB/BN composites was higher than that of P3,4HB/BN composites at all BN levels was mainly because of the difference of the degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luyt AS, Molefi JA, Krump H (2006) Thermal, mechanical and electrical properties of copper powder filled low-density band linear low-density polyethylene composites. Polym Degrad Stab 91:1629–1636. doi:10.1016/j.polymdegradstab.2005.09.014

    Article  CAS  Google Scholar 

  2. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155–165. doi:10.1016/j.tca.2004.12.024

    Article  CAS  Google Scholar 

  3. Xu Y, Luo X, Chung DDL (2002) Lithium doped polyethylene–glycol-based thermal interface pastes for high thermal contact conductance. J Electron Packag 124:188–191. doi:10.1115/1.1477191

    Article  CAS  Google Scholar 

  4. Wolff EG, Schneider DA (1998) Prediction of thermal contact resistance between polished surfaces. Int J Heat Transf 41:3469–3482. doi:10.1016/S0017-9310(98)00067-2

    Article  CAS  Google Scholar 

  5. Yu J, Mo H, Jiang P (2015) Polymer/boron nitride nanosheet composites with high thermal conductivity and sufficient dielectric strength. Polym Adv Technol 26:514–520. doi:10.1002/pat.3481

    Article  CAS  Google Scholar 

  6. Wang Z, Fu Y, Meng W, Zhi C (2014) Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Res Lett 9:643–649. doi:10.1186/1556-276x-9-643

    Article  Google Scholar 

  7. Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z (2009) Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers. Appl Phys Lett 95:22410422. doi:10.1063/1.3271028

    Google Scholar 

  8. Huang X, Iizuka T, Jiang P, Ohki Y, Tanaka T (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 116:13629–13639. doi:10.1021/jp3026545

    Article  CAS  Google Scholar 

  9. Esfe H, Karimipour A, Yan W, Dahari M (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Transf 88:728–734. doi:10.1016/j.ijheatmasstransfer.2015.05.010

    Article  Google Scholar 

  10. Zhou T, Wang X, Mingyan GU, Liu X (2008) Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer 49:4666–4672. doi:10.1016/j.polymer.2008.08.023

    Article  CAS  Google Scholar 

  11. Ahn K, Kim K, Kim M, Kim J (2015) Fabrication of silicon carbonitride-covered boron nitride/Nylon 6,6 composite for enhanced thermal conductivity by melt process. Ceram Int 41:2187–2195. doi:10.1016/j.ceramint.2014.10.018

    Article  CAS  Google Scholar 

  12. He Y, Wang Q, Liu W, Liu Y (2014) Functionalization of boron nitride nanoparticles and their utilization epoxy composites with enhanced thermal conductivity. Phys Status Solid A 211:677–684. doi:10.1002/pssa.201330305

    Article  CAS  Google Scholar 

  13. Yao Y, Zeng X, Guo K, Sun R, Xu J (2015) The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos A 69:49–55. doi:10.1016/j.compositesa.2014.10.027

    Article  CAS  Google Scholar 

  14. Lee D, Song SH, Hwang J, Jeon S (2013) Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 9:2602–2610. doi:10.1002/smll.201203214

    Article  CAS  Google Scholar 

  15. Liem H, Choy HS (2013) Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun 163:41–45. doi:10.1016/j.ssc.2013.03.024

    Article  CAS  Google Scholar 

  16. Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2009) Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater 19:1857–1862. doi:10.1002/adfm.200801435

    Article  CAS  Google Scholar 

  17. Gu J, Zhang Q, Dang J, Xie C (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23:1025–1028. doi:10.1002/pat.2063

    Article  CAS  Google Scholar 

  18. Song W, Wang P, Cao L, Anderson A, Meziani M, Farr AJ, Sun Y (2012) Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501. doi:10.1002/anie.201201689

    Article  CAS  Google Scholar 

  19. Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320:177–186. doi:10.1016/s0040-6031(98)00463-8

    Article  CAS  Google Scholar 

  20. Kim K, Kim M, Kim J (2014) Enhancement of the thermal and mechanical properties of a surface-modified boron nitride–polyurethane composite. Polym Adv Technol 25:791–798. doi:10.1002/pat.3291

    Article  CAS  Google Scholar 

  21. Tsai M, Tseng H, Chiang J, Li J (2014) Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl Mater Interfaces 6:8639–8645. doi:10.1021/am501323m

    Article  CAS  Google Scholar 

  22. Takahashi S, Imai Y, Kan A, Hotta Y, Ogawa H (2014) Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications. J Alloy Comp 615:141–145. doi:10.1016/j.jallcom.2014.06.138

    Article  CAS  Google Scholar 

  23. Kim K, Kim M, Kim J (2014) Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles. Compos Sci Technol 103:72–77. doi:10.1016/j.compscitech.2014.08.012

    Article  CAS  Google Scholar 

  24. Cai Z, Hou C, Yang G (2012) Characteristics and bending performance of electroactive polymer blend made with cellulose and poly(3-hydroxybutyrate). Carbohydr Polym 87:650–657. doi:10.1016/j.carbpol.2011.08.038

    Article  CAS  Google Scholar 

  25. Naffakh M, Marco C, Ellis G (2014) Inorganic WS2 nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate). Cryst Eng Comm 16:1126–1135. doi:10.1039/C3CE41987H

    Article  CAS  Google Scholar 

  26. Wurm A, Lellinger D, Minakov AA, Skipa T, Pötschke P, Nicula R, Alig I (2014) Crystallization of poly(-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study. Polymer 5:2220–2232. doi:10.1016/j.polymer.2014.02.069

    Article  Google Scholar 

  27. Park HJ, Kim TA, Kim R, Kim J, Park M (2013) A new method to estimate thermal conductivity of polymer composite using characteristics of fillers. J Appl Polym Sci 129:965–972. doi:10.1002/app.38653

    Article  CAS  Google Scholar 

  28. Kim K, Kim M, Hwang Y, Kim J (2014) Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int 140:2047–2056. doi:10.1016/j.ceramint.2013.07.117

    Article  Google Scholar 

  29. Tang L, Zhang H, Sprenger S, Ye L, Zhang Z (2012) Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Compos Sci Technol 72:558–565. doi:10.1016/j.compscitech.2011.12.015

    Article  CAS  Google Scholar 

  30. Huang L, Zhu P, Li G, Wong C (2015) Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties. J Mater Sci Mater Electron 26:3564–3572. doi:10.1007/s10854-015-2870-1

    Article  CAS  Google Scholar 

  31. Donnay M, Tzavalas S, Logakis E (2015) Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos Sci Technol 110:152–158. doi:10.1016/j.compscitech.2015.02.006

    Article  CAS  Google Scholar 

  32. Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421. doi:10.1021/ma0615046

    Article  CAS  Google Scholar 

  33. Li Y, Han C, Bian J, Han L, Dong L, Gao G (2012) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Compos 33:1719–1727. doi:10.1002/pc.22306

    Article  CAS  Google Scholar 

  34. Gao Z, Zhao L (2015) Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Mater Des 66:176–182. doi:10.1016/j.matdes.2014.10.052

    Article  CAS  Google Scholar 

  35. Pan P, Liang Z, Nakamura N, Miyagawa T, Inoue Y (2009) Uracil as nucleating agent for bacterial poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] copolymers. Macromol Biosci 9:585–595. doi:10.1002/mabi.200800294

    Article  CAS  Google Scholar 

  36. Kai W, He Y, Inoue Y (2005) Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym Int 54:780–789. doi:10.1002/pi.1758

    Article  CAS  Google Scholar 

  37. Jing X, Qiu Z (2012) Effect of low thermally reduced graphene loadings on the crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate). Ind Eng Chem Res 51:13686–13691. doi:10.1021/ie3018466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51503204) and the Fund of Chinese Academy of Sciences (Changchun Branch) (No. 2015SYHZ0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kong, J., Han, L. et al. Effect of crystallinity on the thermal conductivity of poly(3-hydroxybutyrate)/BN composites. Polym. Bull. 75, 1651–1666 (2018). https://doi.org/10.1007/s00289-017-2114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2114-z

Keywords

Navigation