Advertisement

Polymer Bulletin

, Volume 75, Issue 4, pp 1547–1562 | Cite as

Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application

  • Buket Bezgin CarbasEmail author
  • Burak Tekin
Original Paper

Abstract

Poly(3,4-ethylenedioxythiophene) polymer film (PEDOT-IL) was electrosynthesized in the ionic liquid (IL) 1-ethyl-3-methylimidazolium hydrogen sulphate (EMIMHSO4) medium, which also contains 0.1 M LiClO4 in ACN. For comparison reasons in terms of structure and electrode capacitance performance, PEDOT film was also synthesized electrochemically without IL. The SEM results show that PEDOT-IL film has more porous surface and fine textures with nanometer-diameter than PEDOT polymer. Different electrochemical methods including galvanostatic charge–discharge (CD) experiments, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were carried out to investigate the applicability of the system as a redox supercapacitor for both polymers. PEDOT-IL electrode shows higher optimum specific capacitance than PEDOT film. Additionally, the symmetrical supercapacitor was assembled from two PEDOT-IL electrodes in LiClO4/ACN medium and exhibited a maximum specific capacitance of 107 F g−1, an energy density of 11.5 Wh kg−1 at a power density 13 kW kg−1, and an excellent cycle life of 96% specific capacitance retention after 1000 cycles.

Keywords

Conducting polymer Poly(3,4-ethylenedioxythiophene) Supercapacitor Ionic liquid 

Notes

Acknowledgements

We gratefully acknowledge financial support from Karamanoglu Mehmetbey University (KMU-BAP-38-M-16).

References

  1. 1.
    Snook GA, Kao P, Best A (2011) Conducting polymer based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRefGoogle Scholar
  2. 2.
    Muthuklaksmi B, Kalpana D, Pitchumani S et al (2006) Electrochemical deposition of polypyrrole for symmetric supercapacitor. J Power Sources 158:1533–1537CrossRefGoogle Scholar
  3. 3.
    Burke A (2000) Why, how, and where is the technology. J Power Sources 91:37–50CrossRefGoogle Scholar
  4. 4.
    Kim BK, Sy S, Yu A et al (1994) Electrochemical supercapacitors for energy storage and conversion: handbook of clean energy systems. Wiley, New YorkGoogle Scholar
  5. 5.
    Irvin JA, Stenger-Smith JD (2007) In handbook of conducting polymers: processing and applications. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104:4245–4270CrossRefGoogle Scholar
  7. 7.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  8. 8.
    Dongfang Y (2012) Application of nanocomposites for supercapacitors: characteristics and properties, nanocomposites-new trends and developments. Farzad Ebrahim InTech, OntarioGoogle Scholar
  9. 9.
    Lei C, Wilson P, Leakakou C (2011) Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. J Power Sources 196:7827Google Scholar
  10. 10.
    Frackowiak E, Beguin F (2001) Materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  11. 11.
    Österholm AM, Shen DE, Dyer AL et al (2013) Optimization Of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic device. ACS Appl Mater Interfaces 5:13432–13440CrossRefGoogle Scholar
  12. 12.
    Dai L, Chen T (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280CrossRefGoogle Scholar
  13. 13.
    Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703CrossRefGoogle Scholar
  14. 14.
    Xing W, Li F, Yan ZF, Lu GQ (2004) Synthesis and electrochemical properties of mesoporous nickel oxide. J Power Sources 134:324–330CrossRefGoogle Scholar
  15. 15.
    Simon P, Gogotsi Y (2008) Materials for electrochemical. Nat Mater 7:845–854CrossRefGoogle Scholar
  16. 16.
    Dona J, Mini PA, Balakrishnan A et al (2014) Electrochemical behaviour of graphene-poly(3,4-ethylenedioxythiophene)(PEDOT) composite electrodes for supercapacitor applications. Bull Mater Sci 37:61–69CrossRefGoogle Scholar
  17. 17.
    Shown I, Ganguly A (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 2015(3):2–26CrossRefGoogle Scholar
  18. 18.
    Arbizzani C, Catellani M, Meneghello L (1996) Polymer-based redox supercapacitors: a comparative study. Electrochim Acta 41:21–26CrossRefGoogle Scholar
  19. 19.
    Yu G, Liu N, Wang H et al (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442CrossRefGoogle Scholar
  20. 20.
    Groenendaal BL, Jonas F, Freitag D et al (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494CrossRefGoogle Scholar
  21. 21.
    Ryu KS, Lee YG, Honk YS et al (2004) Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor. Electrochim Acta 50:843–847CrossRefGoogle Scholar
  22. 22.
    Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. J Power Sources 196:559–564CrossRefGoogle Scholar
  23. 23.
    Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19:215710CrossRefGoogle Scholar
  24. 24.
    Stenger-Smith JD, Webber CK, Anderson N et al (2002) Poly(3,4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes. J Electrochem Soc 149:A973–A977CrossRefGoogle Scholar
  25. 25.
    Lehtimaki S, Suominen M, Damlin P et al (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interfaces 40:22137–22147CrossRefGoogle Scholar
  26. 26.
    Mazzoldi A, Degl’ Innocent C, Michelucci M, De Rossi D (1998) Actuative properties of polyaniline fibers under electrochemical stimulation mater. Sci Eng C Mater Biol Appl 6:65–78CrossRefGoogle Scholar
  27. 27.
    Nadeau JM, Swager TM (2004) New B-linked pyrrole monomers: approaches to highly stable and conductive electrochromic polymers. Tetrahedron 60:7141–7146CrossRefGoogle Scholar
  28. 28.
    Winther-Jensen B, West K (2006) React Funct Polym 66:479–483CrossRefGoogle Scholar
  29. 29.
    Mazurkiewicz JH, Innis PC, Wallace GG, Forsyth M et al (2003) Stability of highly conductive poly-3,4-ethylene-dioxythiophene. Synth Met 31:135–136Google Scholar
  30. 30.
    Balducci A, Bardi U, Caporali S et al (2004) Ionic liquids for hybrid supercapacitors. Electrochem Commun 6:566–570CrossRefGoogle Scholar
  31. 31.
    Lu W, Fadeev AG, Qi B et al (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987CrossRefGoogle Scholar
  32. 32.
    Shamsuri A, Kuang D (2010) Ionic liquids: preparations and limitations. Makara Sains 14:101–106Google Scholar
  33. 33.
    Pandey GP, Rastogia AC (2012) Solid-state supercapacitors based on pulse polymerized poly(3,4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte. J Electrochem Soc 159:A1664–A1671CrossRefGoogle Scholar
  34. 34.
    Ketabi S, Lian K (2011) EMIHSO4 based polymer electrolyte for electrochemical capacitors. ECS Trans 35:61–66CrossRefGoogle Scholar
  35. 35.
    Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 20:11379–11448CrossRefGoogle Scholar
  36. 36.
    Fu WC, Hsieh YT, Wu TY et al (2016) Electrochemical preparation of porous poly(3,4-ethylenedioxythiophene) electrodes from room temperature ionic liquids for supercapacitors. J Electrochem Soc 6:G61–G68CrossRefGoogle Scholar
  37. 37.
    Liu K, Hu Z, Xue R et al (2008) Electropolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J Power Sources 2:858–862CrossRefGoogle Scholar
  38. 38.
    Zhou W, Du Y, Zhang H (2010) High efficient electrocatalytic oxidation of formic acid on Pt/polyindoles composite catalysts. Electrochim Acta 55:2911–2917CrossRefGoogle Scholar
  39. 39.
    Christensen P, Hamnet A (1994) Techniques and mechanisms in electrochemistry. Blackie Academic And Professional, New YorkGoogle Scholar
  40. 40.
    Dyer J, Reynolds T, Skotheim J (2007) Handbook of conducting polymers. CRC Press, Boca RatonGoogle Scholar
  41. 41.
    Wub HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni0.3 Co2.7 O4 hierarchical structures for high performance supercapacitors. Energy Environ Sci 6:3619–3626CrossRefGoogle Scholar
  42. 42.
    Chen W-C, Wen T-C (2003) Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J Power Sources 117:273–282CrossRefGoogle Scholar
  43. 43.
    Ma X, Zhou W, Mo D et al (2015) Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte. Synth Methods 203:98–106CrossRefGoogle Scholar
  44. 44.
    Endres F, MacFarlane D, Abbott A (2008) Electrodeposition from ionic liquids. Wiley, OxfordCrossRefGoogle Scholar
  45. 45.
    Tekin B, Bezgin BC (2016) Electrochemical studies on poly(3,4-ethylenedıoxythiophene) polymer and its potential application in electrochemical capacitor. In: Proceedings of International Conference on Advanced Technology and Sciences (ICAT’16), pp 1168–1174Google Scholar
  46. 46.
    Groenendaal L, Zotti G, Aubert P-H et al (2003) Electrochemistry of poly(3,4-alkylenedioxythiophene) derivates. Adv Mater 15:855–879CrossRefGoogle Scholar
  47. 47.
    Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route ACS appl. Mater Interfaces 5:2188–2196CrossRefGoogle Scholar
  48. 48.
    Ren X, Pickup PG (1993) Coupling of ion and electron transport during impedance measurements on a conducting polymer with similar ionic and electronic conductivities. J Chem Soc Faraday Trans 89:321–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Energy Systems EngineeringKaramanoğlu Mehmetbey UniversityKaramanTurkey
  2. 2.Conductive Polymers and Energy Applications LaboratoryKaramanoglu Mehmetbey UniversityKaramanTurkey
  3. 3.Department of Advanced TechnologiesKaramanoglu Mehmetbey UniversityKaramanTurkey

Personalised recommendations