Skip to main content

Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana

Abstract

Garcinia mangostana-loaded electrospun polyacrylonitrile (PAN) fiber mats with antibacterial and anti-tuberculosis properties were fabricated from PAN solution containing G. mangostana extract in dimethylformamide. 10% PAN solution was mixed with G. mangostana in amounts of 10, 15, 20, and 30 wt% based on the weight of PAN powder used in the experiment. The PAN solutions were processed using the electrospinning process. Both untreated (neat) and G. mangostana-loaded PAN fibers were smooth in appearance, and the average diameter of samples was ~215 and ~245 nm, respectively. Morphologies, release characteristics, antimicrobial efficiencies against Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pyogenes, and anti-tuberculosis properties of the neat electrospun and 10–30% G. mangostana-loaded e-spun fiber mats were investigated. In vitro release studies of G. mangostana from e-spun PAN fiber mats were determined using the total immersion method in acetate buffer and phosphate buffer solutions containing Tween 80 and methanol. The cumulative released amount of G. mangostana from the samples proportionally increased with the increase of G. mangostana incorporated in the spinning solutions. This study demonstrated a convenient procedure with the potential to develop the antimicrobial and anti-tuberculosis properties of electrospun fibrous membranes containing G. mangostana, which are beneficial in filtration applications for respirators, face masks, and air-conditioning filters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    McEvoy CRE, Falmer A, Gey van Pittius NC, Victor TC, Helden PD, Warren RM (2007) The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis 87:393–404. doi:10.1016/j.tube.2007.05.010

    CAS  Article  Google Scholar 

  2. 2.

    Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899. doi:10.1016/S0140-6736(03)14333-4

    Article  Google Scholar 

  3. 3.

    Pedraza-Chaverri J, Cardenas-Rodrguez N, Orozco-Ibarra M, Perez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46:3227–3239. doi:10.1016/j.fct.2008.07.024

    CAS  Article  Google Scholar 

  4. 4.

    Yoshimura M, Ninomiya K, Tagashira Y, Maejima K, Yoshida T, Amakura Y (2015) Polyphenolic constituents of the pericarp of mangosteen (Garcinia mangostana L.). J Agric Food Chem 63:7670–7674. doi:10.1021/acs.jafc.5b01771

    CAS  Article  Google Scholar 

  5. 5.

    Arunrattiyakorn P, Suksamrarn S, Suwannasai N, Kanzaki H (2011) Microbial metabolism of alpha-mangostin isolated from Garcinia mangostana L. Phytochemistry 72:730–734. doi:10.1016/j.phytochem.2011.02.007

    CAS  Article  Google Scholar 

  6. 6.

    Tjahjani S, Widowati W, Khiong K, Suhendra A, Tjokropranoto R (2014) Antioxidant properties of Garcinia mangostana L (mangosteen) rind. Procedia Chem 13:198–203. doi:10.1016/j.proche.2014.12.027

    CAS  Article  Google Scholar 

  7. 7.

    Ibrahim MY, Hashim NM, Mariod AA, Mohan S, Abdulla MA, Abdelwahab SI, Arbab IA (2016) α-Mangostin from Garcinia mangostana Linn: an updated review of its pharmacological properties. Arab J Chem 9:317–329. doi:10.1016/j.arabjc.2014.02.011

    CAS  Article  Google Scholar 

  8. 8.

    Naczk M, Towsend M, Zadernowski R, Shahidi F (2011) Protein-binding and antioxidant potential of phenolics of mangosteen fruit (Garcinia mangostana). Food Chem 128:292–298. doi:10.1016/j.foodchem.2011.03.017

    CAS  Article  Google Scholar 

  9. 9.

    Zadernowski R, Czaplicki S, Naczk M (2009) Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chem 112:685–689. doi:10.1016/j.foodchem.2008.06.030

    CAS  Article  Google Scholar 

  10. 10.

    Chaivisuthangkura A, Malaikaew Y, Chaovanalikit A, Jaratrungtawee A, Panseeta P, Ratananukul P, Suksamrarn S (2009) Prenylated xanthone composition of Garcinia mangostana (Mangosteen) fruit hull. Chromatographia 69:315–318. doi:10.1365/s10337-008-0890-10009-5893/09/02

    CAS  Article  Google Scholar 

  11. 11.

    Chin YW, Jung HA, Chai H, Keller WJ, Kinghorn AD (2008) Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 69:754–758. doi:10.1016/j.phytochem.2007.09.023

    CAS  Article  Google Scholar 

  12. 12.

    Xie Z, Sintara M, Chang T, Ou B (2015) Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults. Food Sci Nutr 3:32–38. doi:10.1002/fsn3.187

    CAS  Article  Google Scholar 

  13. 13.

    Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2003) Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 66:1124–1127. doi:10.1021/np020546u

    CAS  Article  Google Scholar 

  14. 14.

    Matsumoto K, Akao Y, Yi H, Ohguchi K, Ito T, Tanaka T, Kobayashi E, Iinuma M, Nozawa Y (2004) Preferential target is mitochondria in alpha-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorg Med Chem 12:5799–5806. doi:10.1016/j.bmc.2004.08.034

    CAS  Article  Google Scholar 

  15. 15.

    Matsumoto K, Akao Y, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2005) Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorg Med Chem 13:6064–6069. doi:10.1016/j.bmc.2005.06.065

    CAS  Article  Google Scholar 

  16. 16.

    Watanapokasin R, Jarinthanan F, Nakamura Y, Sawasjirakij N, Jaratrungtawee A, Suksamrarn S (2011) Effects of α-mangostin on apoptosis induction of human colon cancer. World J Gastroenterol 17:2086–2095. doi:10.3748/wjg.v17.i16.2086

    CAS  Article  Google Scholar 

  17. 17.

    Jung H-A, Su B-N, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen). J. Agric. Food Chem 54:2077–2082. doi:10.1021/jf052649z

    CAS  Article  Google Scholar 

  18. 18.

    Moongkarndi P, Srisawat C, Saetun P, Jantaravinid J, Peerapittayamongkol C, Soi-ampornkul R, Junnu S, Sinchaikul S, Chen S-T, Charoensilp P, Thongboonkerd V, Neungton N (2010) Protective effect of mangosteen extract against beta-amyloid-induced cytotoxicity, oxidative stress and altered proteome in SK-N-SH Cells. J Proteome Res 9:2076–2086. doi:10.1021/pr100049v

    CAS  Article  Google Scholar 

  19. 19.

    Chomnawang MT, Surassmo S, Nukoolkarn VS, Gritsanapan W (2005) Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J Ethnopharmacol 101:330–333. doi:10.1016/j.jep.2005.04.038

    Article  Google Scholar 

  20. 20.

    Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, Suksamrarn A (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull 51:857–859. doi:10.1248/cpb.51.857

    CAS  Article  Google Scholar 

  21. 21.

    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Memb Sci 296:1–8. doi:10.1016/j.memsci.2007.03.038

    CAS  Article  Google Scholar 

  22. 22.

    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703. doi:10.1002/anie.200604646

    CAS  Article  Google Scholar 

  23. 23.

    Ahmadi Majd S, Khorasgani MR, Moshtaghian SJ, Talebi A, Khezri M (2016) Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromolec 92:1162–1168. doi:10.1016/j.ijbiomac.2016.06.035

    CAS  Article  Google Scholar 

  24. 24.

    Huang T, Pang F, Hsieh I, Cakmak M (2016) Control of radial structural gradient in PAN/silver nanofibers using solvent vapor treatment. Synth Met 221:309–318. doi:10.1016/j.synthmet.2016.09.009

    CAS  Article  Google Scholar 

  25. 25.

    Tes-Hao K, Jui-Shing L (2006) The effect of a chemical vapor deposited carbon film from acetylene on the properties of graphitized PAN-based carbon fibers. New Carbon Mater 21:297–301. doi:10.1155/2010/395191

    Article  Google Scholar 

  26. 26.

    Lala N, Ramaseshan R, Li B, Sundarrajan S, Barhate R, Liu Y, Ramakrishna S (2007) Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 97:1357–1365. doi:10.1002/bit.21351

    CAS  Article  Google Scholar 

  27. 27.

    Rujitanaroj P, Pimpha N, Supaphol P (2010) Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. J Appl Polym Sci 116:1967–1976. doi:10.1002/app.31498

    CAS  Google Scholar 

  28. 28.

    Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83:1457–1469. doi:10.1016/j.carbpol.2010.09.048

    CAS  Article  Google Scholar 

  29. 29.

    Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343. doi:10.1016/j.ijpharm.2013.05.012

    CAS  Article  Google Scholar 

  30. 30.

    Song J, Remmers SJA, Shao J, Kolwijck E, Walboomers XF, Jansen JA, Leeuwenburgh SCG, Yang F (2016) Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomed Nanotech Biol Med 12:1357–1364. doi:10.1016/j.nano.2016.02.005

    CAS  Article  Google Scholar 

  31. 31.

    Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546–7557. doi:10.1016/j.polymer.2007.11.019

    CAS  Article  Google Scholar 

  32. 32.

    Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm 67:387–397. doi:10.1016/j.ejpb.2007.03.018

    CAS  Article  Google Scholar 

  33. 33.

    Chou S, Woodrow KA (2017) Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 65:724–733. doi:10.1016/j.jmbbm.2016.09.004

    CAS  Article  Google Scholar 

  34. 34.

    Laha A, Sharma C, Majumdar S (2017) Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh. Mater Sci Eng C 76:782–786. doi:10.1016/j.msec.2017.03.110

    CAS  Article  Google Scholar 

  35. 35.

    Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai Medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia 80:102–104. doi:10.1016/j.fitote.2008.10.007

    CAS  Article  Google Scholar 

  36. 36.

    Sudta P, Jiarawapi P, Suksamrarn A, Hongmanee P, Suksamrarn S (2013) Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analog. Chem Pharm Bull 61:194–203. doi:10.1248/cpb.c12-00874

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support received from the Research Pyramid, Rachadaphiseksomphot Endowment Fund (GCURP_58_02_63_01) of Chulalongkorn University. This work was supported in part by (1) the Petroleum and Petrochemical College, Chulalongkorn University, (2) the Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials (CE-PPAM), (3) the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, (4) Department for Development of Thai Traditional and Alternative Medicine Ministry of Health, Ministry of Public Health of Thailand, and (5) the Faculty of Biotechnology, Ramkhamhaeng University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Piyachat Chuysinuan or Pitt Supaphol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chuysinuan, P., Techasakul, S., Suksamrarn, S. et al. Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana . Polym. Bull. 75, 1311–1327 (2018). https://doi.org/10.1007/s00289-017-2087-y

Download citation

Keywords

  • Electrospinning
  • Polyacrylonitrile
  • Garcinia mangostana