Skip to main content
Log in

Chiral polyimide and its nanocomposites with graphene oxide using l-phenylalanine-based diamine

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new chiral diamine l-methyl 2-(3,5-diaminobenzamido)-3-phenylpropanoate (MABPP) was synthesized using l-phenylalanine (essential amino acid) as the starting material. The structure of the synthesized diamine was supported by FT-IR, 1H, and 13C-NMR and mass spectral techniques. The diamine was polymerized with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) by thermal imidization method to produce a chiral polyimide (PI). Additionally, polyimide nanocomposites were also prepared by incorporating different ratios of graphene oxide (GO) in the PI matrix. The synthesized polyimide and PI/GO nanocomposites were characterized by FT-IR and Raman and NMR spectroscopy. The PI was found to have SOR of −71.4°. The inherent viscosity was found to be 0.87 dL g−1 indicating that high molecular weight PI was formed. The surface morphology of the neat PI and PI/GO nanocomposites was studied by TEM and AFM, revealing uniform distribution of the nanoparticles in the PI matrix. The thermal properties were studied by DSC and TGA analysis. The dielectric constant was in the range of 2.8–5.0. Biological studies of both polyimide and PI/GO nancomposites elicit promising antimicrobial effects against Gram-positive and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hajipour R, Zahmatkesh S, Ruoho E (2007) An investigation into the synthesis and characterization of new optically active poly(ester-imide) thermoplastic elastomers, derived from N,N′-(pyromellitoyl)-bis-l-leucine, synthetic diols and polyethyleneglycol-diol (PEG-200). React Funct Polym 67:1040–1051

    Article  CAS  Google Scholar 

  2. Hamciuc C, Hamciuc E, Cazacu M et al (2008) Poly(ether-imide) and poly(ether-imide)-polydimethyl-siloxane containing isopropylidene groups. Polym Bull 59:825–832

    Article  CAS  Google Scholar 

  3. Abdolmaleki A, Mallakpour S, Borandeh S (2011) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Appl Surf Sci 257:6725–6733

    Article  CAS  Google Scholar 

  4. Abdolmaleki A, Mallakpour S, Borandeh S (2012) The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites. Mater Res Bull 47:1123–1129

    Article  CAS  Google Scholar 

  5. Nilsson KPR, Olsson JDM, Konradsson P, Ingana O (2004) Enantiomeric substituents determine the chirality of luminescent conjugated polythiophenes. Macromolecules 37:6316–6321

    Article  CAS  Google Scholar 

  6. Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse osmosis applications. ACS Appl Mater Interfaces 5:12510–12519

    Article  CAS  Google Scholar 

  7. Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 1:71–76

    Article  CAS  Google Scholar 

  8. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  9. Zhang X, Fan X, Li H, Yan C (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22:24081–24091

    Article  CAS  Google Scholar 

  10. Pandey RP, Thakur AK, Shahi VK (2014) Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties. ACS Appl Mater Interfaces 6:16993–17002

    Article  CAS  Google Scholar 

  11. Hantel MM, Kaspar T, Nesper R et al (2011) Partially reduced graphite oxide for supercapacitor electrodes: effect of graphene layer spacing and huge specific capacitance. Electrochem Commun 13:90–92

    Article  CAS  Google Scholar 

  12. Sadhasivam B, Muthusamy S (2016) Synthesis and characterization of optically active polyimides and their octa(aminophenyl)silsesquioxane nanocomposites. High Perform Polym 28:547–561

    Article  CAS  Google Scholar 

  13. Sadhasivam B, Muthusamy S (2016) Thermal and dielectric properties of newly developed l-tryptophan-based optically active polyimide and its POSS nanocomposites. Des Monomers Polym 19:236–247

    Article  CAS  Google Scholar 

  14. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  15. Liao W, Yang S, Wang J (2013) Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ. ACS Appl Mater Interfaces 5:869–877

    Article  CAS  Google Scholar 

  16. Rukmanikrishnan B, Sadhasivam B, Muthusamy S (2016) Polytriazoleimide/graphene oxide nanocomposites and their properties. Polym Compos. doi:10.1002/pc.24184

    Google Scholar 

  17. Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5(31):24342–24351

    Article  CAS  Google Scholar 

  18. He Y, Tong C, Geng L et al (2014) Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: size effect of graphene oxide. J Membr Sci 458:36–46

    Article  CAS  Google Scholar 

  19. Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss RA, Meador MA (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9):7644–7655

    Article  CAS  Google Scholar 

  20. Liu H, Li Y, Wang T, Wang Q (2012) In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J Mater Sci 47(4):1867–1874

    Article  CAS  Google Scholar 

  21. Shi H, Li Y, Guo T (2013) In situ preparation of transparent polyimide nanocomposite with a small load of graphene oxide. J Appl Polym Sci 128(5):3163–3169

    Article  CAS  Google Scholar 

  22. Yano K, Usuki A, Okada A (1997) Synthesis and properties of polyimide-clay hybrid films. J Polym Sci A 35(11):2289–2294

    Article  CAS  Google Scholar 

  23. Lee YJ, Kim YW, Ha JD, Oh JM, Yi MH (2007) Synthesis and characterization of novel polyimides with 1-octadecyl side chains for liquid crystal alignment layers. Polym Adv Technol 18(3):226–234

    Article  CAS  Google Scholar 

  24. Iqbal R, Khosa MK, Jamal MA, Ilyas S, Hussain MT, Hamid M (2016) Synthesis and characterization of new soluble thermally stable poly (azomethine-ether-imide)s: discerning the possibility for high temperature applications. Polym Adv Technol 27(2):221–227

    Article  CAS  Google Scholar 

  25. Parveen AS, Thirukumaran P, Sarojadevi M (2014) Low dielectric materials from fluorinated polybenzoxazines. Polym Adv Technol 25(12):1538–1545

    Article  CAS  Google Scholar 

  26. Boumail A, Salmieri S, St-Yves F et al (2016) Effect of antimicrobial coatings on microbiological, sensorial and physico-chemical properties of pre-cut cauliflowers. Postharvest Biol Technol 116:1–7

    Article  CAS  Google Scholar 

  27. He M, Xiao H, Zhou Y, Lu P (2015) Synthesis, characterization and antimicrobial activities of water-soluble amphiphilic copolymers containing ciprofloxacin and quaternary ammonium salts. J Mater Chem B 3(18):3704–3713

    Article  CAS  Google Scholar 

  28. Mallakpour S, Dinari M (2011) Insertion of novel optically active poly(amide-imide) chains containing pyromellitoyl-bis-l-phenylalanine linkages into the nanolayered silicates modified with l-tyrosine through solution intercalation. Polymer 52:2514–2523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grand Commission, New Delhi, for funding this project. The authors also acknowledge DST (FIST) and UGC (SAP) for the financial support extended to procure the instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarojadevi Muthusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhasivam, B., Rigana, M.F., Rukmanikrishnan, B. et al. Chiral polyimide and its nanocomposites with graphene oxide using l-phenylalanine-based diamine. Polym. Bull. 75, 829–849 (2018). https://doi.org/10.1007/s00289-017-2050-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2050-y

Keywords

Navigation