Skip to main content

Effects of a volatile solvent with low surface tension combining with the silica network reinforcement on retention of LLC structure in polymer matrix

Abstract

Organic polymers with ordered nanostructures templated from lyotropic liquid crystals (LLC) have many potential applications in areas such as membranes, tissue engineering, and drug delivery. However, after removing the LLC templates, the high surface tension during vacuum or air drying will deform the structure to a great extent. This study investigates the structure retention in cross-linked poly(ethylene glycol) diacrylate polymer through reinforcement of a silica network and using a volatile solvent with low surface tension. The LLC templates were formed from non-ionic surfactant, Brij 56/water system. Silica network was obtained through a sol–gel method using TEOS as a silica precursor and hydrochloric acid as a catalyst. The LLC templates were removed and the samples were dried from this solvent using a mixed solvent n-hexane and ethanol (H–E solvent) with lower surface tension. Samples dried from H–E solvent preserved the structure template from LLC even with low TEOS loading due to the presence of a non-polar solvent that has little effect on silica reverse hydrolysis and lower surface tension. This indicates that drying the sample from a volatile solvent with low surface tension combining with the silica network reinforcement facilities the structure retention.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Peck M, Dusserre N, McAllister TN, L’Heureux N (2011) Tissue engineering by self-assembly. Mate Today 14:218–224

    CAS  Article  Google Scholar 

  2. 2.

    Allain V, Bourgaux C, Couvreur P (2012) Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res 40:1891–1903

    CAS  Article  Google Scholar 

  3. 3.

    Zhou MJ, Kidd TJ, Noble RD, Gin DL (2005) Supported lyotropic liquid-crystal polymer membranes: Promising materials for molecular size-selective aqueous nanofiltration. Adv Mater 17:1850–1853

    CAS  Article  Google Scholar 

  4. 4.

    Clapper JD, Guymon CA (2007) Physical behavior of cross-linked PEG hydrogels photopolymerized within nanostructured lyotropic liquid crystalline templates. Macromolecules 40:1101–1107

    CAS  Article  Google Scholar 

  5. 5.

    Collings PJ, Hird M (1997) Introduction to liquid crystals: chemistry and physics. Taylor & Francis Ltd, Great Britain

    Book  Google Scholar 

  6. 6.

    Valentin R, Molvinger K, Viton C, Domard A, Quignard F (2005) From hydrocolloids to high specific surface area porous supports for catalysis. Biomacromol 6:2785–2792

    CAS  Article  Google Scholar 

  7. 7.

    Fratesi SE, Lynch FL, Kirkland BL, Brown LR (2004) Effects of SEM preparation techniques on the of bacteria and biofilms in the carter sandstone. J Sediment Res 74:858–867

    Article  Google Scholar 

  8. 8.

    Namatsu H (2002) Supercritical drying for nanostructure fabrication. J Photopolym Sci Tec 15:381–388

    CAS  Article  Google Scholar 

  9. 9.

    Namatsu H, Yamazaki K, Kurihara K (1999) Supercritical drying for nanostructure fabrication without pattern collapse. Microelectron Eng 46:129–132

    CAS  Article  Google Scholar 

  10. 10.

    Zhang J, Xie Z, Hill AJ, She FH, Thornton AW, Hoang M, Kong LX (2012) Structure retention in cross-linked poly(ethylene glycol) diacrylate hydrogel templated from hexagonal lyotropic liquid crystal by controlling surface tension. Soft Matter 8:2087–2094

    CAS  Article  Google Scholar 

  11. 11.

    Zhang J, Xie Z, Hoang M, Hill AJ, Cong W, She FH, Gao W, Kong LX (2014) Retention of original LLC structure in cross-linked poly(ethylene glycol) diacrylate hydrogel with the reinforcement via silica network. Soft Matter 10:5192–5200

    CAS  Article  Google Scholar 

  12. 12.

    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42:167–183

    CAS  Article  Google Scholar 

  13. 13.

    Valles-Lluch A, Ferrer GG, Pradas MM (2010) Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P(EMA-co-HEA). Eur Polym J 46:910–917

    CAS  Article  Google Scholar 

  14. 14.

    Kontou E, Niaounakis M (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 47:1267–1280

    CAS  Article  Google Scholar 

  15. 15.

    Palza H, Vergara R, Zapata P (2011) Composites of polypropylene melt blended with synthesized silica nanoparticles. Compos Sci Technol 71:535–540

    CAS  Article  Google Scholar 

  16. 16.

    Liu Y, Kontopoulou M (2006) The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer 47:7731–7739

    CAS  Article  Google Scholar 

  17. 17.

    Zappalorto M, Pontefisso A, Fabrizi A, Quaresimin M (2015) Mechanical behaviour of epoxy/silica nanocomposites: experiments and modelling. Compos Part A-Appl S 72:58–64

    CAS  Article  Google Scholar 

  18. 18.

    Tao R, Simon SL (2015) Bulk and shear rheology of silica/polystyrene nanocomposite: reinforcement and dynamics. J Polym Sci Pol Phys 53:621–632

    CAS  Article  Google Scholar 

  19. 19.

    Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron-microscopy. Stain Technol 58:347–351

    CAS  Article  Google Scholar 

  20. 20.

    Doucet RG, Bradley SA (1989) Spin drying for scanning electron-microscopy sample preparation. J Electron Micr Tech 12:58–59

    CAS  Article  Google Scholar 

  21. 21.

    Perdigao J, Lambrechts P, Vanmeerbeek B, Vanherle G, Lopes ALB (1995) Field-emission SEM comparison of 4 postfixation drying techniques for human dentin. J Biomed Mater Res 29:1111–1120

    CAS  Article  Google Scholar 

  22. 22.

    Hulvat JF, Stupp SI (2003) Liquid-crystal templating of conducting polymers. Angew Chem Int Edit 42:778–781

    CAS  Article  Google Scholar 

  23. 23.

    Lester CL, Colson CD, Guymon CA (2001) Photopolymerization kinetics and structure development of templated lyotropic liquid crystalline systems. Macromolecules 34:4430–4438

    CAS  Article  Google Scholar 

  24. 24.

    Liu D, Lei JH, Guo LP, Du XD, Zeng K (2009) Ordered thiol-functionalized mesoporous silica with macrostructure by true liquid crystal templating route. Micropor Mesopor Mat 117:67–74

    CAS  Article  Google Scholar 

  25. 25.

    Schmidt H, Scholze H, Kaiser A (1984) Principles of hydrolysis and condensation reaction of alkoxysilanes. J Non-Cryst Solids 63:1–11

    CAS  Article  Google Scholar 

  26. 26.

    Cornelius CJ, Marand E (2002) Hybrid inorganic-organic materials based on a 6FDA-6FpDA-DABA polyimide and silica: physical characterization studies. Polymer 43:2385–2400

    CAS  Article  Google Scholar 

  27. 27.

    Akerlof G (1932) Dielectric constants of some organic solvent-water mixtures at various temperatures. J Am Chem Soc 54:4125–4139

    CAS  Article  Google Scholar 

  28. 28.

    Singh RP, Sinha CP (1982) Dielectric behavior of the binary-mixtures of normal-hexane with toluene, cholobenzene, and 1-hexanol. J Chem Eng Data 27:283–287

    Article  Google Scholar 

Download references

Acknowledgements

The project has been supported by a Deakin University postgraduate scholarship and a CSIRO top-up scholarship from the National Research Flagship Water for a Healthy Country. SAXS was performed on the SAXS beamline at the Australian Synchrotron, Victoria, Australia.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Manh Hoang or Ling Xue Kong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xie, Z., Hill, A.J. et al. Effects of a volatile solvent with low surface tension combining with the silica network reinforcement on retention of LLC structure in polymer matrix. Polym. Bull. 75, 581–595 (2018). https://doi.org/10.1007/s00289-017-2041-z

Download citation

Keywords

  • Nanostructured polymers
  • Liquid crystals
  • Self-assembly