Skip to main content
Log in

Synthesis of waste cooking oil-based polyurethane for solid polymer electrolyte

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Bio-based polyurethane (PU) was synthesized from waste cooking oil-based polyol for application as host in solid polymer electrolyte. The effect of varying wt% of lithium iodide (LiI) salt as charge carriers was studied. The polymer electrolyte films were characterized using Fourier transform infrared (FTIR), electrochemical impedance spectroscopy, scanning electron microscope (SEM), differential scanning calorimeter and thermogravimetric analysis. The shifting of absorption peaks for amine (N–H), carbonyl (C=O) and ether (C–O–C) groups observed in FTIR analysis showed that the PU-LiI complexation had occurred. The highest ionic conductivity obtained was at 30% LiI with value of 4.67 × 10−6 Scm−1. SEM revealed the good miscibility between lithium salt and PU. These properties exhibited the potential of waste cooking oil-based PU as alternative host for solid polymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dzulkurnain NA, Ahmad A, Mohamed NS (2015) P(MMA-EMA) random copolymer electrolytes incorporating sodium iodide for potential application in a dye-sensitized solar cell. Polymers. doi:10.3390/polym7020266

    Google Scholar 

  2. Daud FN, Ahmad A, Badri KH (2014) An investigation on the properties of palm-based polyurethane solid polymer electrolyte. Int J Polymer Sci 2014:326716-1–326716-5. doi:10.1155/2014/326716

    Article  Google Scholar 

  3. Ibrahim S, Ahmad A, Mohamed NS (2015) Characterization of novel castor oil-based polyurethane polymer electrolytes. Polymers 7(4):747–759. doi:10.3390/polym7040747

    Article  CAS  Google Scholar 

  4. Tahir SM, Norfirdaus W, Salleh W, Syahamatun N, Hadid N, Enderus NF (2016) Synthesis of waste cooking oil-based polyol using sugarcane bagasse activated carbon and transesterification reaction for rigid polyurethane foam. Mater Sci Forum 846:690–696. doi:10.4028/www.scientific.net/MSF.846.690

    Article  Google Scholar 

  5. Badri KH (2012) Biobased polyurethane from palm kernel oil-based polyol: polyurethane. Polyurethanes. doi:10.5772/47966

    Google Scholar 

  6. Su’Ait MS, Ahmad A, Badri KH, Mohamed NS, Rahman MY, Ricardo CLA, Scardi P (2014) The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. Int J Hydrogen Energy 39:3005–3017. doi:10.1016/j.ijhydene.2013.08.117

    Article  Google Scholar 

  7. Das B, Konwar U, Mandal M, Karak N (2013) Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Ind Crop Prod 44:396–404. doi:10.1016/j.indcrop.2012.11.028

    Article  CAS  Google Scholar 

  8. Yeganeh H, Hojati-Talemi P (2007) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol). Polym Degrad Stab 92:480–489. doi:10.1016/j.polymdegradstab.2006.10.011

    Article  CAS  Google Scholar 

  9. Jalilian S, Yeganeh H (2015) Preparation and properties of biodegradable polyurethane networks from carbonated soybean oil. Polym Bull 72:1379–1392. doi:10.1007/s00289-015-1342-3

    Article  CAS  Google Scholar 

  10. Ullah Z, Bustam MA, Man Z (2014) Characterization of Waste palm cooking oil for biodiesel production. International Journal of Chemical Engineering and Applications. doi:10.7763/IJCEA.2014.V5.366

    Google Scholar 

  11. Ferraro LG, Bastos F, Alvarenga DS, Gelfuso MV, Thomazini D (2014) Investigation to obtain polyols from residual frying oil. Mate Sci Forum. 776:351–356. doi:10.4028/www.scientific.net/MSF.775-776.351

    Article  Google Scholar 

  12. Akintayo CO, Akintayo ET, Thomas Z, Babalola BM (2013) Newly developed epoxy-polyol and epoxy- polyurethane from renewable resources. British Journal of Applied Science and Technology 3:984–993

    Article  CAS  Google Scholar 

  13. Hazmi ASA, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH (2013) Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind Crops Prod 50:563–567. doi:10.1016/j.indcrop.2013.08.003

    Article  CAS  Google Scholar 

  14. Daud FN, Ahmad A, Badri KH (2013) Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte. In: AIP conference proceedings, vol 1571. pp 775–781. doi:10.1063/1.4858749

  15. Azeman NH, Yusof NA, Abdullah J, Yunus R, Hamidon MN, Hajian R (2015) Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions. Molecules. doi:10.3390/molecules200712328

    Google Scholar 

  16. Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792. doi:10.1021/ma400197c

    Article  CAS  Google Scholar 

  17. Wong CS, Badri KH (2012) Chemical analyses of palm kernel oil-based polyurethane prepolymer. Mater Sci Appl. 2012:78–86

    Google Scholar 

  18. Daud FN, Ahmad A, Haji K (2015) Characterisations of palm-based polyurethane solid polymer electrolyte. 1107:163–167. doi:10.4028/www.scientific.net/AMR.1107.163

  19. Wong CS, Badri KH, Ataollahi N, Law KP, Su MS, Hassan NI (2014) Synthesis of new bio-based solid polymer electrolyte effect of NCO/OH ratio on their chemical, thermal properties and ionic conductivity. Int J Chem Nuclear Mater Metall Eng 8:1168–1175

    Google Scholar 

  20. Chaurasia SK, Singh RK, Chandra S (2014) Ionic liquid assisted modification in ionic conductivity, phase transition temperature and crystallization kinetics behaviour of polymer poly(ethylene oxide). Sol State Ion 262:790–794. doi:10.1016/j.ssi.2013.09.048

    Article  CAS  Google Scholar 

  21. Daud FN, Ahmad A, Haji Badri K (2014) An investigation on the properties of palm-based polyurethane solid polymer electrolyte. Int J Polym Sci. doi:10.1155/2014/326716

    Google Scholar 

  22. Ahmad A, Rahman MYA, Low SP, Hamzah H (2011) Effect of LiBF 4 salt concentration on the properties of plasticized MG49-TiO 2 based nanocomposite polymer electrolyte. Int Sch Res Netw. doi:10.5402/2011/401280

    Google Scholar 

  23. Santhosh P, Gopalan A, Vasudevan T, Lee KP (2006) Preparation and characterization of conducting poly(diphenylamine) entrapped polyurethane network electrolyte. J Appl Polym Sci 101:611–617. doi:10.1002/app.23326

    Article  CAS  Google Scholar 

  24. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartarone E, Magistris A (2010) Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis (trifluoromethanesulfonyl) imide/propylene carbonate salt system. J Power Sour 195:5761–5767. doi:10.1016/j.jpowsour.2010.03.085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to extend their gratitude to the MARA University of Technology and University of Malaya for facility support. This work is also supported by fundamental research grants [600-RMI/RAGS 5/3 (15/2014)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. F. W. Salleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salleh, W.N.F.W., Tahir, S.M. & Mohamed, N.S. Synthesis of waste cooking oil-based polyurethane for solid polymer electrolyte. Polym. Bull. 75, 109–120 (2018). https://doi.org/10.1007/s00289-017-2019-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2019-x

Keywords

Navigation