Skip to main content
Log in

Steady-shear rheology and activation thermodynamics of the interpolymer complex between nonionic polymeric surfactant and hydrophobically modified polyacrylic acid in propylene glycol–water mixture

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Rheology of the individual polymer solutions and complex polymer mixtures was studied in the temperature range from 30 to −20 °C. Based on the obtained data steady-shear flow properties and thermodynamic parameters of a viscous flow were calculated. Exploiting the flow parameters such as the flow behavior index it was demonstrated that addition of synthesized anionic polymeric surfactant—polyvinyl octanal (PVO) to the polyelectrolyte solution enhanced pseudoplasticity of the obtained liquids at low temperatures. Along with that, the anomalous behavior of the activation enthalpy and activation entropy as a function of temperature was observed for the polyelectrolyte solutions containing PVO. Thus, it was shown that relatively high initial values of ΔH A diminish sharply with an increase in temperature and TΔS A values decrease dramatically below 0 °C. The obtained results were in line with the concept of the critical temperature observed for the strongly associated polymeric systems in water–glycol mixtures. In the light of the findings it was assumed that specific interpolymer association occurs at low temperatures resulting in consequent increase in the values of apparent viscosity and pseudoplasticity of the studied polymeric liquids. It was also suggested that studied system is well suited for the formulation of the thickened aircraft deicing fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Robb ID, Stevenson P (2000) Interaction between poly(acrylic acid) and an ethoxylated nonionic surfactant. Langmuir 16(18):7168–7172. doi:10.1021/la000386r

    Article  CAS  Google Scholar 

  2. Anghel DF, Saito S, Baran A, Iovescu A (1998) Interaction between poly(acrylic acid) and nonionic surfactants with the same poly(ethylene oxide) but different hydrophobic moieties. Langmuir 14(19):5342–5346. doi:10.1021/la9707888

    Article  CAS  Google Scholar 

  3. Bogomolova A, Keller S, Klingler J et al (2014) Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant. Langmuir 30(38):11307–11318. doi:10.1021/la5031262

    Article  CAS  Google Scholar 

  4. Talwar S, Harding J, Oleson KR, Khan SA (2009) Surfactant-mediated modulation of hydrophobic interactions in associative polymer solutions containing cyclodextrin. Langmuir 25(2):794–802. doi:10.1021/la803056e

    Article  CAS  Google Scholar 

  5. Langevin D (2009) Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions. A review. Adv Colloid Interfac 147–148:170–177. doi:10.1016/j.cis.2008.08.013

    Article  Google Scholar 

  6. English RJ, Laurer JH, Spontak RJ, Khan SA (2002) Hydrophobically modified associative polymer solutions: rheology and microstructure in the presence of nonionic surfactants. Ind Eng Chem Res 41(25):6425–6435. doi:10.1021/ie020409s

    Article  CAS  Google Scholar 

  7. Ya Li, Kwak JCT (2004) Rheology of hydrophobically modified polyacrylamide-co-poly(acrylic acid) on addition of surfactant and variation of solution pH. Langmuir 20(12):4859–4866. doi:10.1021/la036331h

    Article  Google Scholar 

  8. Plucktaveesak N, Konop AJ, Colby RH (2003) Viscosity of polyelectrolyte solutions with oppositely charged surfactant. J Phys Chem B 107(32):8166–8171. doi:10.1021/jp0275995

    Article  CAS  Google Scholar 

  9. Raffa P, Wever DAZ, Picchioni F, Broekhuis AA (2015) Polymeric surfactants: synthesis, properties, and links to applications. Chem Rev 115(16):8504–8563. doi:10.1021/cr500129h

    Article  CAS  Google Scholar 

  10. Rumyantsev M (2013) Influences of co-solvent on hydrogen bond reorganization in ternary poly(vinyl alcohol) solutions. Eur Polym J 49:2257–2266. doi:10.1016/j.eurpolymj.2013.05.005

    Article  CAS  Google Scholar 

  11. Rumyantsev M, Zelentsov SV, Gushchin AV (2013) Retardation effect in acetalization of poly(vinyl alcohol) with butyraldehyde. Eur Polym J 49:1698–1706. doi:10.1016/j.eurpolymj.2013.03.014

    Article  CAS  Google Scholar 

  12. Awwadi FF, Willett RD, Peterson KA, Twamley B (2007) The nature of halogen···halide synthons: theoretical and crystallographic studies. J Phys Chem A 111:2319–2328. doi:10.1021/jp0660684

    Article  CAS  Google Scholar 

  13. Rumyantsev M, Sitnikov NS, Somov NV (2015) Hydrogen-bond-assisted organocatalytic acetalization of secondary alcohols: experimental and theoretical studies. J Phys Chem A 119(18):4108–4117. doi:10.1021/acs.jpca.5b02102

    Article  CAS  Google Scholar 

  14. Berger PA, Remsen EE, Leo GC, David DJ (1991) Characterization of acetal ring conformations in poly(vinyl acetal) resins using two dimensional nuclear magnetic resonance spectroscopy. Macromolecules 24(9):2189–2193. doi:10.1021/ma00009a008

    Article  CAS  Google Scholar 

  15. Bruch MD, Bonesteel JAK (1986) Interpretation of the proton NMR spectrum of poly(vinyl butyral) by two-dimensional NMR. Macromolecules 19(6):1622–1627. doi:10.1021/ma00160a023

    Article  CAS  Google Scholar 

  16. Hurst GA, Bella M, Salzmann CG (2015) The rheological properties of poly(vinyl alcohol) gels from rotational viscometry. J Chem Educ 92(5):940–945. doi:10.1021/ed500415r

    Article  CAS  Google Scholar 

  17. Goddard ED (1994) Polymer/surfactant interaction—its relevance to detergent systems. J Am Oil Chem Soc 71:1–16. doi:10.1007/BF02541467

    Article  CAS  Google Scholar 

  18. Trufakina LM, Kudeshova EG (2003) Rheological properties of the mixtures of semidiluted and concentrated solutions of polyvinyl alcohol and carboxymethyl cellulose. J Eng Phys Thermophys 76:535–539. doi:10.1023/A:1024704510811

    Article  CAS  Google Scholar 

  19. Lodge TP, Muthukumar M (1996) Physical chemistry of polymers: entropy, interactions, and dynamics. J Phys Chem 100(31):13275–13292. doi:10.1021/jp960244z

    Article  CAS  Google Scholar 

  20. Martinez F, Pena MA, Bustamante P (2011) Thermodynamic analysis and enthalpy–entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilibr 308:98–106. doi:10.1016/j.fluid.2011.06.016

    Article  CAS  Google Scholar 

  21. Searle MS, Williams DH (1992) The cost of conformational order: entropy changes in molecular association. J Am Chem Soc 114(27):10690–10697. doi:10.1021/ja00053a002

    Article  CAS  Google Scholar 

  22. Wolfenden R (2003) Thermodynamic and extrathermodynamic requirements of enzyme catalysis. Biophys Chem 105(2–3):559–572. doi:10.1016/S0301-4622(03)00066-8

    Article  CAS  Google Scholar 

  23. Tager AA (1974) Effect of solvent quality on the viscosity of flexible-chain and rigid-chain polymers in a wide range of concentrations. Rheol Acta 13:323–332. doi:10.1007/BF01520895

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Features of the interaction of surfactants with alkyl methacrylates-containing copolymers were studied with financial support of the Russian Science Foundation (project No 15-13-00032). Synthesis of the HMPAA was carried out in Lobachevsky State University of Nizhny Novgorod and was financially supported by the Ministry of Education and Science of Russian Federation (agreement No.02.G25.31.0119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Rumyantsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, M., Savinova, M.V. Steady-shear rheology and activation thermodynamics of the interpolymer complex between nonionic polymeric surfactant and hydrophobically modified polyacrylic acid in propylene glycol–water mixture. Polym. Bull. 75, 17–30 (2018). https://doi.org/10.1007/s00289-017-2013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2013-3

Keywords

Navigation