Polymer Bulletin

, Volume 74, Issue 12, pp 5221–5230 | Cite as

Post-electrospinning thermal treatments on poly(4-methyl-1-pentene) nanofiber membranes for improved mechanical properties

  • Jatoi Abdul Wahab
  • Hoik Lee
  • Kai Wei
  • Tomoki Nagaishi
  • Zeeshan Khatri
  • Bijoy K. Behera
  • Kyu-Beom Kim
  • Ick Soo KimEmail author
Original Paper


Herein, we fabricated bead-free isotactic poly(4-methyl-1-pentene) (PMP) nanofiber membranes and characterized their thermo-mechanical properties. PMP nanofiber membranes were electrospun and heat-treated at 180 and 220 °C, and thermally treated under load. The report investigates the effect of thermal treatments on the morphology, degree of crystallinity and mechanical properties, improving the mechanical properties of PMP nanofibers. Prepared nanofibers were investigated by SEM, DSC, XRD and mechanical properties. The mechanical properties demonstrate a tensile strength, an elongation (%) and a Young’s modulus of the nanofiber membranes. The DSC and WAXD analysis shows an increase of degree of crystallinity with thermal treatment. Thermally treated nanofibers under load demonstrate 4.1 times higher tensile strength and 14.1 times higher Young’s modulus than PMP fibrous membrane. Thermally treated nanofibers under load at 200 °C did not retain their structure and fuse with neighboring fibers, because it almost reached the melting temperature of (230 °C).


Nanofibers Poly(4-methyl-1-pentene) Electrospinning Mechanical properties Nanofiber morphology 



The research project was supported by Wataya Co., Ltd., Japan.


  1. 1.
    Lee Y, Kim B-S, Hong JH, Park S, Kim H, Kim I-S (2012) Enhanced mechanical properties and pre-tension effects of polyurethane (PU) nanofiber filaments prepared by electrospinning and dry twisting. J Polym Res 19(2):1–5CrossRefGoogle Scholar
  2. 2.
    Yin C, Jatoi A, Bang H, Gopiraman M, Kim I-S (2016) Fabrication of silk fibroin based three dimensional scaffolds for tissue engineering. Fibers Poly 17(8):1140–1145CrossRefGoogle Scholar
  3. 3.
    Lee H, Koo JM, Sohn D, Kim I-S, Im SS (2016) High thermal stability and high tensile strength terpolyester nanofibers containing biobased monomer: fabrication and characterization. RSC Adv 6(46):40383–40388CrossRefGoogle Scholar
  4. 4.
    Lee H, Kim M, Sohn D, Kim SH, Oh S-G, Im SS, Kim IS (2017) Electrospun tungsten trioxide nanofibers decorated with palladium oxide nanoparticles exhibiting enhanced photocatalytic activity. RSC Adv 7(10):6108–6113CrossRefGoogle Scholar
  5. 5.
    Khatri Z, Jatoi AW, Ahmed F, Kim I-S (2016) Cell adhesion behavior of poly (ε-caprolactone)/poly (l-lactic acid) nanofibers scaffold. Mater Lett 171:178–181CrossRefGoogle Scholar
  6. 6.
    Ke M, Wahab JA, Hyunsik B, Song K-H, Lee JS, Gopiraman M, Kim IS (2016) Allantoin-loaded porous silica nanoparticles/polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Adv 6(6):4593–4600CrossRefGoogle Scholar
  7. 7.
    Gopiraman M, Jatoi AW, Hiromichi S, Yamaguchi K, Jeon H-Y, Chung I-M, Soo KI (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohyd Polym 149(20):51–59CrossRefGoogle Scholar
  8. 8.
    Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O 2 batteries. Energy Environ Sci 4(8):2952–2958CrossRefGoogle Scholar
  9. 9.
    Lee H, Phan D-N, Kim M, Sohn D, Oh S-G, Kim S, Kim I (2016) The chemical deposition method for the decoration of palladium particles on carbon nanofibers with rapid conductivity changes. Nanomaterials 6(12):226–235CrossRefGoogle Scholar
  10. 10.
    Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623CrossRefGoogle Scholar
  11. 11.
    Kizildag N, Ucar N, Karacan I, Onen A, Demirsoy N (2014) The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile–polyaniline composite nanoweb. J Ind Text 45(6):1548–1570CrossRefGoogle Scholar
  12. 12.
    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  13. 13.
    Lee H, Nagaishi T, Phan D-N, Kim M, Zhang K-Q, Wei K, Kim IS (2017) Effect of graphene incorporation in carbon nanofiber decorated with TiO2 for photoanode applications. RSC Adv 7(11):6574–6582CrossRefGoogle Scholar
  14. 14.
    Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRefGoogle Scholar
  15. 15.
    Lee H, Watanabe K, Kim M, Gopiraman M, Song K-H, Lee JS, Kim IS (2016) Handspinning enabled highly concentrated carbon nanotubes with controlled orientation in nanofibers. Sci Rep 6:37590CrossRefGoogle Scholar
  16. 16.
    W-x Zhang, Y-z Wang, C-f Sun (2007) Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res 14(6):467–474CrossRefGoogle Scholar
  17. 17.
    Saligheh O, Forouharshad M, Arasteh R, Eslami-Farsani R, Khajavi R, Roudbari BY (2013) The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers. J Polym Res 20(2):1–6CrossRefGoogle Scholar
  18. 18.
    He B, Tian L, Li J, Pan Z (2013) Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers Poly 14(3):405–408CrossRefGoogle Scholar
  19. 19.
    Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718CrossRefGoogle Scholar
  20. 20.
    Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospun multiwalled nanotube/poly (methyl methacrylate) nanofibers. Adv Mater 19(9):1228–1233CrossRefGoogle Scholar
  21. 21.
    Sun W, Cai Q, Li P, Deng X, Wei Y, Xu M, Yang X (2010) Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Dental Mat 26(9):873–880CrossRefGoogle Scholar
  22. 22.
    You Y, Lee SW, Lee SJ, Park WH (2006) Thermal interfiber bonding of electrospun poly (l-lactic acid) nanofibers. Mater Lett 60(11):1331–1333CrossRefGoogle Scholar
  23. 23.
    Tsai H, Ciou Y, Hu C, Lee K, Yu D, Lai J (2005) Heat-treatment effect on the morphology and pervaporation performances of asymmetric PAN hollow fiber membranes. J Membr Sci 255(1):33–47CrossRefGoogle Scholar
  24. 24.
    Hou X, Yang X, Zhang L, Waclawik E, Wu S (2010) Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites. Mater Des 31(4):1726–1730CrossRefGoogle Scholar
  25. 25.
    Griffith JH, Rånby B (1960) Dilatometric measurements on poly (4-methyl-1-pentene) glass and melt transition temperatures, crystallization rates, and unusual density behavior. J Poly Sci 44(144):369–381CrossRefGoogle Scholar
  26. 26.
    Lee K-H, Givens S, Chase DB, Rabolt JF (2006) Electrostatic polymer processing of isotactic poly (4-methyl-1-pentene) fibrous membrane. Polymer 47(23):8013–8018CrossRefGoogle Scholar
  27. 27.
    Lee K-H, Givens SR, Snively CM, Chase B, Rabolt JF (2008) Crystallization behavior of electrospun PB/PMP blend fibrous membranes. Macromolecules 41(9):3144–3148CrossRefGoogle Scholar
  28. 28.
    Fong H, Chun I, Reneker D (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592CrossRefGoogle Scholar
  29. 29.
    Bryant GM (1967) Fibers from crystalline hydrocarbon polymers1. Text Res J 37(7):552–563CrossRefGoogle Scholar
  30. 30.
    Hayes HJ, McCarthy TJ (1998) Maleation of poly (4-methyl-1-pentene) using supercritical carbon dioxide. Macromolecules 31(15):4813–4819CrossRefGoogle Scholar
  31. 31.
    Jalili R, Morshed M, Ravandi SAH (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101(6):4350–4357CrossRefGoogle Scholar
  32. 32.
    Esrafilzadeh D, Jalili R, Morshed M (2008) Crystalline order and mechanical properties of as-electrospun and post-treated bundles of uniaxially aligned polyacrylonitrile nanofiber. J Appl Polym Sci 110(5):3014–3022CrossRefGoogle Scholar
  33. 33.
    Charlet G, Delmas G (1984) Effect of solvent on the polymorphism of poly (4-methylpentene-1): 2. crystallization in semi-dilute solutions. Polymer 25(11):1619–1625CrossRefGoogle Scholar
  34. 34.
    De Rosa C (2003) Crystal structure of form II of isotactic poly (4-methyl-1-pentene). Macromolecules 36(16):6087–6094CrossRefGoogle Scholar
  35. 35.
    Miyoshi T, Pascui O, Reichert D (2004) Large-amplitude motions of form III of isotactic poly (4-methyl-1-pentene) crystallites prior to crystal-crystal transformation. Macromolecules 37(17):6653–6656CrossRefGoogle Scholar
  36. 36.
    Chen S, Jin J, Zhang J (2010) Non-isothermal crystallization behaviors of poly (4-methyl-pentene-1). J Therm Anal Calorim 103(1):229–236CrossRefGoogle Scholar
  37. 37.
    Aharoni SM, Charlet G, Delmas G (1981) Investigation of solutions and gels of poly (4-methyl-1-pentene) in cyclohexane and decalin by viscosimetry, calorimetry, and X-ray diffraction. A new crystalline form of poly (4-methyl-1-pentane) from gels. Macromolecules 14(5):1390–1394CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jatoi Abdul Wahab
    • 1
    • 2
  • Hoik Lee
    • 1
  • Kai Wei
    • 3
  • Tomoki Nagaishi
    • 1
  • Zeeshan Khatri
    • 2
  • Bijoy K. Behera
    • 4
  • Kyu-Beom Kim
    • 5
  • Ick Soo Kim
    • 1
    Email author
  1. 1.Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER)Shinshu UniversityUedaJapan
  2. 2.Department of Textile EngineeringMehran University of Engineering and TechnologyJamshoroPakistan
  3. 3.National Engineering Laboratory for Modern Silk, College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina
  4. 4.Department of Textile TechnologyIndian Institute of TechnologyHauz KhasIndia
  5. 5.Department of Textile DesignGyeongnam National University of Science and TechnologyJinjuKorea

Personalised recommendations