Skip to main content

Advertisement

Log in

Optimization of the vulcanization parameters for ethylene–propylene–diene termonomer (EPDM)/ground waste tyre composite using response surface methodology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The utilization of waste tyre in a green way would definitely mitigate the possible risks of the waste tyre accumulation. A green way to solution for the waste tyre problem is recycling. However, it is necessary to optimize the recycling process parameters to come up with the optimum conditions for the effective reuse of the waste tyre. In this study, response surface methodology (RSM) was used to model and optimize the parameters of curing of EPDM and waste tyre composite for the purpose of waste tyre recycling. EPDM with different loadings of ground waste tyre composites were prepared. Mechanical, thermal, and Soxhlet extraction tests were carried out for the samples. RSM was applied and process parameters were optimized. It was seen that the most effective parameter was the curing temperature. The optimal values of the parameters were determined as curing temperature of 172.1 °C, curing pressure of 15.0 MPa and ground waste tyre content of 14.8% by weight. To test the parameters determined from optimization study, the samples were prepared under optimum conditions, and it was shown that the samples prepared according to the optimum conditions have better thermal, mechanical, and curing properties. The results were heartening to pursue the waste tyre recycling option with a considerable amount of ground waste tyre content within the final composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drobny JG (2014) Thermoplastic elastomers prepared by dynamic vulcanization. Handb Thermoplast Elastomers. doi:10.1016/B978-0-323-22136-8.00006-5

    Google Scholar 

  2. Özdemir T, Güngör A, Reyhancan İA (2017) Flexible neutron shielding composite material of EPDM rubber with boron trioxide: mechanical, thermal investigations and neutron shielding tests. Radiat Phys Chem 131:7–12. doi:10.1016/j.radphyschem.2016.10.012

    Article  Google Scholar 

  3. Ismail H, Awang M, Hazizan MA (2006) Effect of waste tire dust (WTD) size on the mechanical and morphological properties of polypropylene/waste tire dust (PP/WTD) Blends. Polym Plast Technol Eng 45:463–468. doi:10.1080/03602550600553739

    Article  CAS  Google Scholar 

  4. Press A (2016) Spain evacuates 9000 from massive tire fire near Madrid | Daily Mail Online. In: Dly. Mail. http://www.dailymail.co.uk/wires/ap/article-3588494/Spanish-town-residents-ordered-indoors-tire-dump-blaze.html. Accessed 24 May 2016

  5. Adhikari B, De D, Maiti S (2000) Reclamation and recycling of waste rubber. Prog Polym Sci 25:909–948. doi:10.1016/S0079-6700(00)00020-4

    Article  CAS  Google Scholar 

  6. Ramarad S, Khalid M, Ratnam CT et al (2015) Waste tire rubber in polymer blends: a review on the evolution, properties and future. Prog Mater Sci 72:100–140. doi:10.1016/j.pmatsci.2015.02.004

    Article  CAS  Google Scholar 

  7. Lopez-Manchado MA, Arroyo M, Herrero B, Biagiotti J (2003) Vulcanization kinetics of natural rubber-organoclay nanocomposites. J Appl Polym Sci 89:1–15. doi:10.1002/App.12082

    Article  CAS  Google Scholar 

  8. Xu H, Li M, Wu F, Zhang J (2015) Optimization of Fenton oxidation process for treatment of hexogeon industrial wastewater using response surface methodology. Desalin Water Treat 55:77–85. doi:10.1080/19443994.2014.912962

    Article  CAS  Google Scholar 

  9. Fukumori K, Matsushita M (2003) Material recycling technology of crosslinked rubber waste. R&D Rev Toyota CRDL 38:39–47

    CAS  Google Scholar 

  10. Yasin T, Khan S, Nho Y-C, Ahmad R (2012) Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend. Radiat Phys Chem 81:421–425. doi:10.1016/j.radphyschem.2011.12.008

    Article  CAS  Google Scholar 

  11. Mangaraj D (2002) Elastomer blends. Rubber Chem Technol 75:366–422

    Article  Google Scholar 

  12. Cho IH, Zoh KD (2007) Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dye Pigment 75:533–543. doi:10.1016/j.dyepig.2006.06.041

    Article  CAS  Google Scholar 

  13. Aleboyeh A, Daneshvar N, Kasiri MB (2008) Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Process Process Intensif 47:827–832. doi:10.1016/j.cep.2007.01.033

    Article  CAS  Google Scholar 

  14. Körbahti BK, Taşyürek S (2015) Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology. Environ Sci Pollut Res 22:3265–3278. doi:10.1007/s11356-014-3101-7

    Article  Google Scholar 

  15. Formela K, Cysewska M, Korol J (2014) Effect of compounding conditions on static and dynamic mechanical properties of high density polyethylene/ground tire rubber blends. Int Polym Process 2:272–279

    Article  Google Scholar 

  16. Da Costa HM, Ramos VD, Da Silva WS, Sirqueira AS (2010) Analysis and optimization of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM)/scrap rubber tire (SRT) mixtures using RSM methodology. Polym Test 29:572–578. doi:10.1016/j.polymertesting.2010.04.003

    Article  Google Scholar 

  17. Sirqueira AS, Soares BG (2007) The effect of functionalized ethylene propylene diene rubber (EPDM) on the kinetics of sulfur vulcanization of normal rubber/EPDM blends. Macromol Mater Eng 292:62–69. doi:10.1002/mame.200600332

    Article  CAS  Google Scholar 

  18. Bellander M (1998) High pressure vulcanization. Vetenskap Och Konst, Stockholm

    Google Scholar 

  19. Halimatuddahliana IH (2009) The effect of dynamic vulcanization on the properties of polypropylene/ethylene-propylene diene terpolymer/natural rubber (PP/EPDM/NR) ternary blend. Polym Plast Technol Eng 48:34–41. doi:10.1080/03602550802539270

    Article  CAS  Google Scholar 

  20. André M, Wriggers P (2005) Thermo-mechanical behaviour of rubber materials during vulcanization. Int J Solids Struct 42:4758–4778. doi:10.1016/j.ijsolstr.2005.01.015

    Article  Google Scholar 

  21. Sreeja TD, Kutty SKN (2002) Studies on acrylonitrile butadiene rubber/reclaimed rubber blends. J Elastomers Plast 34:145–155. doi:10.1106/009524402024278

    Article  CAS  Google Scholar 

  22. Sreeja TD, Kutty SKN (2003) Styrene butadiene rubber/reclaimed rubber blends. Int J Polym Mater 52:599–609. doi:10.1080/00914030304902

    Article  CAS  Google Scholar 

  23. Roland MC (1989) Rubber mixture. Rubber Chem Technol 62:456

    Article  CAS  Google Scholar 

  24. Özdemir T, Akbay IK, Uzun H, Reyhancan IA (2016) Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Prog Nucl Energy 89:102–109. doi:10.1016/j.pnucene.2016.02.007

    Article  Google Scholar 

  25. Gunasekaran S, Natarajan RK, Kala A (2007) FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc 68:323–330. doi:10.1016/j.saa.2006.11.039

    Article  CAS  Google Scholar 

  26. Orza R (2008) Investigation of peroxide crosslinking of EPDM rubber by solid-state NMR. Thesis, Eindhoven University of Technology

  27. Sanches NB, Cassu SN, Diniz MF, de Dutra RCL (2014) Characterization of additives typically employed in EPDM formulations by using FT-IR of gaseous pyrolyzates. Polímeros Ciência e Tecnol 24:269–275. doi:10.4322/polimeros.2014.066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Kutlugün Akbay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbay, İ.K., Güngör, A. & Özdemir, T. Optimization of the vulcanization parameters for ethylene–propylene–diene termonomer (EPDM)/ground waste tyre composite using response surface methodology. Polym. Bull. 74, 5095–5109 (2017). https://doi.org/10.1007/s00289-017-2001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2001-7

Keywords

Navigation