Skip to main content
Log in

In situ polymerisation and characteristic properties of the waterborne graphene oxide/poly(siloxane-urethane)s nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, waterborne graphene oxide/poly(siloxane-urethane)s (GO/SWPUs) nanocomposites were in situ synthesised. Therein, siloxane units facilitated the crosslinking of polyurethanes, and GO imparted the nanocomposites with special functions. With increasing GO content, the average particle size, viscosity, and ionic conductivity of the GO/SWPU dispersion increased, but the absolute value of the zeta potential decreased; this was due to ionic interactions between the COONH+(C2H5)3 ions of the SWPU and COOH+ ions of the GO. The surface roughness of the GO/SWPU film was larger as GO content was higher, which was due to a strong interaction between the GO and SWPU phases. Increasing the GO content improved the thermal resistance, dynamic glass transition temperature, and tensile strength of the GO/SWPU film, but adding more than 0.1 wt% GO yielded unfavourable results. Thus, adding GO improved the thermal and mechanical properties of the GO/SWPU nanocomposites, but this improvement was observed only up to a certain GO concentration, possibly because of the agglutination of GO in SWPU. In addition, the surface and volumetric electrical resistivities of the GO/SWPU nanocomposites decreased when the GO content were increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hepburn C (1982) Polyurethane elastomers. Applied Science, London

    Google Scholar 

  2. Tout R (2000) A review of adhesives for furniture. Int J Adhes Adhes 20:269–272

    Article  CAS  Google Scholar 

  3. Yoon SS, Kim SC (2005) Modification of aqueous polyurethane dispersions by polybutadiene. J Appl Polym Sci 95:1062–1068

    Article  CAS  Google Scholar 

  4. Mohanty S, Krishnamurti N (1996) Synthesis and characterization of aqueous cationomeric polyurethanes and their use as adhesives. J Appl Polym Sci 62:1993–2003

    Article  CAS  Google Scholar 

  5. Perez-Liminana M, Aran-Ais F, Torró-Palau AM, Orgilés-Barceló AC, Martín-Martínez JM (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes 25:507–517

    Article  CAS  Google Scholar 

  6. Jhon YK, Cheong IW, Kim JH (2001) Chain extension study of aqueous polyurethane dispersions. Colloids Surf A 179:71

    Article  CAS  Google Scholar 

  7. Du H, Zhao Y, Li Q, Wang J, Kang M, Wang X, Xiang H (2008) Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI. J Appl Polym Sci 110:1396–1402

    Article  CAS  Google Scholar 

  8. Kim HD, Kim TW (1998) Preparation and properties of UV-curable polyurethane acrylate ionomers. J Appl Polym Sci 67:2153–2162

    Article  CAS  Google Scholar 

  9. Vogt-Birnbrich B (1996) Novel synthesis of low VOC polymeric dispersions and their application in waterborne coatings. Prog Org Coat 29:31–38

    Article  CAS  Google Scholar 

  10. Blank WJ, Tramontano VJ (1996) Properties of crosslinked polyurethane dispersions. Prog Org Coat 27:1–15

    Article  CAS  Google Scholar 

  11. Lee HT, Wang CC (2005) Synthesis and properties of aqueous polyurethane/polytert-butylacrylate hybrid dispersions. J Polym Res 12:271–277

    Article  CAS  Google Scholar 

  12. Hirose M, Zhou J, Nagai K (2000) The structure and properties of acrylic-polyurethane hybrid emulsions. Prog Org Coat 38:27–34

    Article  CAS  Google Scholar 

  13. Sperling LH (1997) Polymeric multicomponent materials. Wiley, New York

    Google Scholar 

  14. Adler HJ, Jahny K, Vogt-Birnbrich B (2001) Polyurethane macromers—new building blocks for acrylic hybrid emulsions with outstanding performance. Prog Org Coat 43:251–257

    Article  CAS  Google Scholar 

  15. Huang X, Ren T, Tang X (2003) Porous polyurethane/acrylate polymer electrolytes prepared byemulsion polymerization. Mater Lett 57:4182–4186

    Article  CAS  Google Scholar 

  16. Park MS, Cho YH, Kim BK, Jang JS (2002) Fabrication of reflective holographic gratings with polyurethane acrylate (PUA). Curr Appl Phys 2:249–252

    Article  Google Scholar 

  17. Chen GN, Chen KN (1999) Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer. J Appl Polym Sci 71:903–913

    Article  CAS  Google Scholar 

  18. Oh IS, Park NH, Suh KD (2000) Mechanical and surface hardness properties of ultraviolet—cured polyurethane acrylate anionomer/silica composite film. J Appl Polym Sci 75:968–975

    Article  CAS  Google Scholar 

  19. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  20. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  21. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  22. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367

    Article  CAS  Google Scholar 

  23. Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as Ph sensor. J Am Chem Soc 130:14392–14393

    Article  CAS  Google Scholar 

  24. Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934

    Article  CAS  Google Scholar 

  25. Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M (2010) Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator. J Phys Chem C 114:9659–9663

    Article  CAS  Google Scholar 

  26. Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos A 42:1856–1861

    Article  Google Scholar 

  27. Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707

    Article  CAS  Google Scholar 

  28. Wang X, Weiyi X, Lei S, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784

    Article  CAS  Google Scholar 

  29. Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024

    Article  CAS  Google Scholar 

  30. Liao KH, Qian Y, Macosko CW (2012) Ultralow percolation graphene/polyurethane acrylate nanocomposites. Polymer 53:3756–3761

    Article  CAS  Google Scholar 

  31. Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis of graphene–polyurethane nanocomposite using highly functionalized graphene oxide aspseudo-crosslinker. Mater Lett 106:319–321

    Article  CAS  Google Scholar 

  32. Oh SM, Oh KM, Dao TD, Lee H, Jeong HM, Kimb BK (2013) Themodification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62:54–63

    Article  CAS  Google Scholar 

  33. Lee SK, Kim BK (2014) Synthesis and properties of shape memory graphene oxide/polyurethane chemical hybrids. Polym Int 63:1197–1201

    Article  CAS  Google Scholar 

  34. Redondo-Foj B, Ortiz-Serna P, Carsí M, Sanchis MJ, Culebras M, Gómezb CM, Cantarerob A (2014) Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites. Polym Int. doi:10.1002/pi.4788 (Article first published online: 26 AUG 2014)

  35. Xin J, Mi HY, Salick MR, Peng XF, Turng LS (2014) Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation. Polym Compsites 35:1408–1417

    Article  Google Scholar 

  36. Pokharel P, Lee DS (2014) High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chem Eng J 253:356–365

    Article  CAS  Google Scholar 

  37. Chen T, Qiu J, Zhu K, He X, Kang X, Dong E (2014) Poly(methylmethacrylate)-functionalized graphene/polyurethane dielectric elastomer composites with superior electric field induced strain. Mater Lett 128:19–22

    Article  CAS  Google Scholar 

  38. Kim JT, Kim BK, Kim EY, Park HC, Jeong HM (2014) Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 74:16–21

    Article  CAS  Google Scholar 

  39. Liao CS, Liao CT, Tso CY, Shy HJ (2011) Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites. Mater Chem Phys 130:270–274

    Article  CAS  Google Scholar 

  40. Jang JY, Jhon YK, Cheong IW, Kim JH (2002) Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion. Colloid Surf A Physicochem Eng 196:135–143

    Article  CAS  Google Scholar 

  41. Jhon YK, Cheong IW, Kim JH (2001) Chain extension study of aqueous polyurethane dispersions. Colloid Surf A Physicochem Eng 179:71–78

    Article  CAS  Google Scholar 

  42. Lee HT, Hwang YT, Chang NS, Huang CCT, Li HC (1995) Waterborne high-solids and powder coatings symposium. New Orleans, p 224

  43. Saunders JH, Frisch KC (1962) Polyurethanes: chemistry and technology. Interscience Publishers, New York, p 173

  44. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  45. Zhou L, Fang S, Tang J, Gao L, Yang J (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Composites 33:1866–1873

    Article  CAS  Google Scholar 

  46. Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsun-Tsing Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suen, MC., Gu, JH., Lee, HT. et al. In situ polymerisation and characteristic properties of the waterborne graphene oxide/poly(siloxane-urethane)s nanocomposites. Polym. Bull. 74, 4921–4942 (2017). https://doi.org/10.1007/s00289-017-1990-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1990-6

Keywords

Navigation