Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide

Abstract

Different plasticized and nucleated polylactide (PLA) systems were prepared and characterized. Two PLA with different l-lactic acid contents (96 and 99.5%) were plasticized with dioctyl adipate (DOA) and nucleated by talc, ethylene bis(stearamide) (EBS), or d-lactic acid-based PLA (PDLA). Crystallization behaviour was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). The combination of plasticizer and nucleating agent was proved to be a very effective approach to improve crystallization velocity of different PLA matrices. Within the studied crystallization temperature range, faster crystallization rates were achieved at lower temperatures. WAXS results indicated the coexistence of α and α′ crystals in all studied systems, except those which showed very low crystallization degrees. Avrami exponent remained constant at around n ≈ 3 for all systems, suggesting equivalent three-dimensional spherulitic growth behaviour regardless crystallization temperature, nucleating agent, and the stereochemistry of the matrix used. Usually, injection-moulding process, where molten polymer is under high pressure, is used for PLA polymer processing. To analyze the effect of pressure on the crystallization process, pressure volume temperature (PVT) measurements were carried out on the systems that showed the fastest crystallization process under atmospheric pressure by DSC. Results showed that the crystallization process was considerably accelerated under pressure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    CAS  Article  Google Scholar 

  2. 2.

    Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier. ISBN: 978-0-08-045316-3

  3. 3.

    Institute for Bioplastics and Biocomposites (nova-Institute) European Bioplastics 2014. http://www.bio-based.eu/markets

  4. 4.

    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    CAS  Article  Google Scholar 

  5. 5.

    Kolstad JJ (1996) Crystallization kinetics of poly (l-lactide-co-meso-lactide). J Appl Polym Sci 62:1079–1091

    CAS  Article  Google Scholar 

  6. 6.

    Liu Y, Wang L, He Y et al (2010) Non-isothermal crystallization kinetics of poly (l-lactide). Polym Int 59:1616–1621

    CAS  Article  Google Scholar 

  7. 7.

    Hamley IW, Castelletto V, Castillo RV et al (2005) Crystallization in Poly(l-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules 38:463–472. doi:10.1021/ma0481499

    CAS  Article  Google Scholar 

  8. 8.

    Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:2246–2255

    CAS  Article  Google Scholar 

  9. 9.

    Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43. doi:10.1002/(SICI)1097-4628(19960103)59:1<37:AID-APP6>3.0.CO;2-N

    CAS  Article  Google Scholar 

  10. 10.

    Courgneau C, Ducruet V, Averous L et al (2013) Nonisothermal crystallization kinetics of poly (lactide)—effect of plasticizers and nucleating agent. Polym Eng Sci 53:1085–1098

    CAS  Article  Google Scholar 

  11. 11.

    Courgneau C, Domenek S, Lebosse R et al (2012) Effect of crystallization on barrier properties of formulated polylactide. Polym Int 61:180–189

    CAS  Article  Google Scholar 

  12. 12.

    Nam JY, Sinha Ray S, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131

    CAS  Article  Google Scholar 

  13. 13.

    Liang J-Z, Zhou L, Tang C-Y, Tsui C-P (2013) Crystalline properties of poly (l-lactic acid) composites filled with nanometer calcium carbonate. Compos Part B Eng 45:1646–1650

    CAS  Article  Google Scholar 

  14. 14.

    Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly (l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837

    CAS  Article  Google Scholar 

  15. 15.

    Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39:300–313

    CAS  Article  Google Scholar 

  16. 16.

    Shi X, Zhang G, Phuong TV, Lazzeri A (2015) Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 20:1579–1593. doi:10.3390/molecules20011579

    CAS  Article  Google Scholar 

  17. 17.

    Xu H-S, Dai XJ, Lamb PR, Li Z-M (2009) Poly (l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352

    CAS  Article  Google Scholar 

  18. 18.

    Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Non-isothermal crystallization behavior of poly (l-lactic acid) in the presence of various additives. Macromol Mater Eng 291:325–335

    CAS  Article  Google Scholar 

  19. 19.

    Nam JY, Okamoto M, Okamoto H et al (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347

    CAS  Article  Google Scholar 

  20. 20.

    Sun J, Yu H, Zhuang X et al (2011) Crystallization behavior of asymmetric PLLA/PDLA blends. J Phys Chem B 115:2864–2869

    CAS  Article  Google Scholar 

  21. 21.

    Xiong Z, Liu G, Zhang X et al (2013) Temperature dependence of crystalline transition of highly-oriented poly (l-lactide)/poly (d-lactide) blend: in-situ synchrotron X-ray scattering study. Polymer 54:964–971

    CAS  Article  Google Scholar 

  22. 22.

    Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly (lactic acid) s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708

    CAS  Article  Google Scholar 

  23. 23.

    Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly (l-lactic acid) crystallization, 2—effects of poly (d-lactic acid) concentration. Macromol Mater Eng 298:270–282

    CAS  Article  Google Scholar 

  24. 24.

    Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly (l-lactic acid) crystallization: effects of molecular weight of poly (d-lactic acid). Polym Int 62:936–948

    CAS  Article  Google Scholar 

  25. 25.

    Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer 48:6855–6866

    CAS  Article  Google Scholar 

  26. 26.

    Xiao HW, Li P, Ren X et al (2010) Isothermal crystallization kinetics and crystal structure of poly (lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci 118:3558–3569

    CAS  Article  Google Scholar 

  27. 27.

    Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45:8239–8251

    CAS  Article  Google Scholar 

  28. 28.

    Gumus S, Ozkoc G, Aytac A (2012) Plasticized and unplasticized PLA/organoclay nanocomposites: short-and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J Appl Polym Sci 123:2837–2848

    CAS  Article  Google Scholar 

  29. 29.

    Xiao H, Yang L, Ren X et al (2010) Kinetics and crystal structure of poly (lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos 31:2057–2068

    CAS  Article  Google Scholar 

  30. 30.

    Zou G-X, Jiao Q-W, Zhang X, Zhao C-X, Li J-C (2015) Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent. J Appl Polym Sci 132:41367. doi:10.1002/app.41367

    Article  Google Scholar 

  31. 31.

    You J, Yu W, Zhou C (2014) Accelerated crystallization of poly (lactic acid): synergistic effect of poly (ethylene glycol), dibenzylidene sorbitol, and long-chain branching. Ind Eng Chem Res 53:1097–1107

    CAS  Article  Google Scholar 

  32. 32.

    Li Y, Wu H, Wang Y et al (2010) Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J Polym Sci Part B Polym Phys 48:520–528

    CAS  Article  Google Scholar 

  33. 33.

    Murariu M, Da Silva Ferreira A, Alexandre M, Dubois P (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19:636–646

    CAS  Article  Google Scholar 

  34. 34.

    Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. Nat Fibers Biopolym Biocompos 527–577. (Taylor Francis, FL, USA)

  35. 35.

    Yamane H, Sasai K (2003) Effect of the addition of poly (d-lactic acid) on the thermal property of poly (l-lactic acid). Polymer 44:2569–2575

    CAS  Article  Google Scholar 

  36. 36.

    Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z Z Für Polym 251:980–990

    CAS  Article  Google Scholar 

  37. 37.

    Tsuji H, Fukui I (2003) Enhanced thermal stability of poly (lactide) s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896

    CAS  Article  Google Scholar 

  38. 38.

    Pan P, Kai W, Zhu B et al (2007) Polymorphous crystallization and multiple melting behavior of poly (l-lactide): molecular weight dependence. Macromolecules 40:6898–6905

    CAS  Article  Google Scholar 

  39. 39.

    Di Lorenzo ML (2006) The crystallization and melting processes of poly(l-lactic acid). Macromol Symp 234:176–183. doi:10.1002/masy.200650223

    Article  Google Scholar 

  40. 40.

    Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640. doi:10.1016/j.progpolymsci.2009.01.003

    CAS  Article  Google Scholar 

  41. 41.

    Legras R, Bailly C, Daumerie M et al (1984) Chemical nucleation, a new concept applied to the mechanism of action of organic acid salts on the crystallization of polyethylene terephthalate and bisphenol—a polycarbonate. Polymer 25:835–844

    CAS  Article  Google Scholar 

  42. 42.

    Nagarajan V, Zhang K, Misra M, Mohanty AK (2015) Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl Mater Interfaces 7:11203–11214

    CAS  Article  Google Scholar 

  43. 43.

    Rosen M, Franklin LC (1981) Process for the interconversion of crystalline forms of ethylene bis-stearamide. Patent: EP 0023088 A1, 3 Feb 1981

  44. 44.

    Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly (l-lactide). J Appl Polym Sci 64:911–919

    CAS  Article  Google Scholar 

  45. 45.

    Barrau S, Vanmansart C, Moreau M et al (2011) Crystallization behavior of carbon nanotube- polylactide nanocomposites. Macromolecules 44:6496–6502

    CAS  Article  Google Scholar 

  46. 46.

    Yu L, Liu H, Dean K, Chen L (2008) Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. J Polym Sci Part B Polym Phys 46:2630–2636

    CAS  Article  Google Scholar 

  47. 47.

    Takada M, Hasegawa S, Ohshima M (2004) Crystallization kinetics of poly (l-lactide) in contact with pressurized CO2. Polym Eng Sci 44:186–196

    CAS  Article  Google Scholar 

  48. 48.

    Mihai M, Huneault MA, Favis BD, Li H (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920

    CAS  Article  Google Scholar 

  49. 49.

    Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2012) Synchronous and separate homo-crystallization of enantiomeric poly(l-lactic acid)/poly(d-lactic acid) blends. Polymer 53:747–754. doi:10.1016/j.polymer.2011.12.023

    CAS  Article  Google Scholar 

  50. 50.

    Tabi T, Sajó IE, Szabo F et al (2010) Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett 4:659–668

    CAS  Article  Google Scholar 

  51. 51.

    Obata Y, Sumitomo T, Ijitsu T et al (2001) The effect of talc on the crystal orientation in polypropylene/ethylene-propylene rubber/talc polymer blends in injection molding. Polym Eng Sci 41:408–416

    CAS  Article  Google Scholar 

  52. 52.

    Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly (l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357

    CAS  Article  Google Scholar 

  53. 53.

    Abe H, Kikkawa Y, Inoue Y, Doi Y (2001) Morphological and kinetic analyses of regime transition for poly [(S)-lactide] crystal growth. Biomacromol 2:1007–1014

    CAS  Article  Google Scholar 

  54. 54.

    Sun J, Hong Z, Yang L et al (2004) Study on crystalline morphology of poly (l-lactide)-poly (ethylene glycol) diblock copolymer. Polymer 45:5969–5977

    CAS  Article  Google Scholar 

  55. 55.

    Yang J, Zhao T, Liu L et al (2006) Isothermal crystallization behavior of the poly (l-lactide) block in poly (l-lactide)-poly (ethylene glycol) diblock copolymers: Influence of the PEG block as a diluted solvent. Polym J 38:1251–1257

    CAS  Article  Google Scholar 

  56. 56.

    Huang S, Jiang S, An L, Chen X (2008) Crystallization and morphology of poly (ethylene oxide-b-lactide) crystalline–crystalline diblock copolymers. J Polym Sci Part B Polym Phys 46:1400–1411

    CAS  Article  Google Scholar 

  57. 57.

    Shi Y, Shao L, Yang J et al (2013) Highly improved crystallization behavior of poly (l-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym Adv Technol 24:42–50

    CAS  Article  Google Scholar 

  58. 58.

    Zhao H, Bian Y, Xu M et al (2014) Enhancing the crystallization of poly (l-lactide) using a montmorillonitic substrate favoring nucleation. CrystEngComm 16:3896–3905

    CAS  Article  Google Scholar 

  59. 59.

    Wang S, Han C, Bian J et al (2011) Morphology, crystallization and enzymatic hydrolysis of poly (l-lactide) nucleated using layered metal phosphonates. Polym Int 60:284–295

    CAS  Article  Google Scholar 

  60. 60.

    Yin H-Y, Wei X-F, Bao R-Y et al (2015) High-melting-point crystals of poly (l-lactic acid)(PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm 17:2310–2320

    CAS  Article  Google Scholar 

  61. 61.

    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26:222–231

    CAS  Article  Google Scholar 

  62. 62.

    Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    CAS  Article  Google Scholar 

  63. 63.

    Silvestre C, Di Lorenzo ML, Di Pace E (2002) Crystallization of polyolefins. In: Vasile C (ed) Handbook of polyolefins, chap 9. Marcel Dekker, Inc, New York. doi:10.1201/9780203908716

  64. 64.

    He Y, Fan Z, Hu Y et al (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly (l-lactide) with different molecular weights. Eur Polym J 43:4431–4439

    CAS  Article  Google Scholar 

  65. 65.

    Caroline Abler (2011) Talc in green plastics. SPE Eurotec 2011 Conference. http://www.imerystalc.com

  66. 66.

    Miyata T, Masuko T (1998) Crystallization behaviour of poly (l-lactide). Polymer 39:5515–5521

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the financial support from the Basque Country Government in the frame of Consolidated Groups (IT-776-13), Elkartek 2015 FORPLA3D and Elkartek 2016 PLAPU3D projects. Technical and human support from SGIker Macrobehaviour-Mesostructure-Nanotechnologie (UPV/EHU, MINECO, GV/EJ, ERDF and ESF) and from ICPEES, University of Strasbourg, is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aitor Arbelaiz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anakabe, J., Zaldua Huici, A.M., Eceiza, A. et al. Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide. Polym. Bull. 74, 4857–4886 (2017). https://doi.org/10.1007/s00289-017-1989-z

Download citation

Keywords

  • Crystallization
  • Biopolymers
  • Differential scanning calorimetry