Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide

  • Jon Anakabe
  • A. M. Zaldua Huici
  • Arantxa Eceiza
  • Aitor Arbelaiz
  • Luc Avérous
Original Paper

Abstract

Different plasticized and nucleated polylactide (PLA) systems were prepared and characterized. Two PLA with different l-lactic acid contents (96 and 99.5%) were plasticized with dioctyl adipate (DOA) and nucleated by talc, ethylene bis(stearamide) (EBS), or d-lactic acid-based PLA (PDLA). Crystallization behaviour was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). The combination of plasticizer and nucleating agent was proved to be a very effective approach to improve crystallization velocity of different PLA matrices. Within the studied crystallization temperature range, faster crystallization rates were achieved at lower temperatures. WAXS results indicated the coexistence of α and α′ crystals in all studied systems, except those which showed very low crystallization degrees. Avrami exponent remained constant at around n ≈ 3 for all systems, suggesting equivalent three-dimensional spherulitic growth behaviour regardless crystallization temperature, nucleating agent, and the stereochemistry of the matrix used. Usually, injection-moulding process, where molten polymer is under high pressure, is used for PLA polymer processing. To analyze the effect of pressure on the crystallization process, pressure volume temperature (PVT) measurements were carried out on the systems that showed the fastest crystallization process under atmospheric pressure by DSC. Results showed that the crystallization process was considerably accelerated under pressure.

Keywords

Crystallization Biopolymers Differential scanning calorimetry 

References

  1. 1.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
  2. 2.
    Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier. ISBN: 978-0-08-045316-3Google Scholar
  3. 3.
    Institute for Bioplastics and Biocomposites (nova-Institute) European Bioplastics 2014. http://www.bio-based.eu/markets
  4. 4.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRefGoogle Scholar
  5. 5.
    Kolstad JJ (1996) Crystallization kinetics of poly (l-lactide-co-meso-lactide). J Appl Polym Sci 62:1079–1091CrossRefGoogle Scholar
  6. 6.
    Liu Y, Wang L, He Y et al (2010) Non-isothermal crystallization kinetics of poly (l-lactide). Polym Int 59:1616–1621CrossRefGoogle Scholar
  7. 7.
    Hamley IW, Castelletto V, Castillo RV et al (2005) Crystallization in Poly(l-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules 38:463–472. doi:10.1021/ma0481499 CrossRefGoogle Scholar
  8. 8.
    Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:2246–2255CrossRefGoogle Scholar
  9. 9.
    Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59:37–43. doi:10.1002/(SICI)1097-4628(19960103)59:1<37:AID-APP6>3.0.CO;2-N CrossRefGoogle Scholar
  10. 10.
    Courgneau C, Ducruet V, Averous L et al (2013) Nonisothermal crystallization kinetics of poly (lactide)—effect of plasticizers and nucleating agent. Polym Eng Sci 53:1085–1098CrossRefGoogle Scholar
  11. 11.
    Courgneau C, Domenek S, Lebosse R et al (2012) Effect of crystallization on barrier properties of formulated polylactide. Polym Int 61:180–189CrossRefGoogle Scholar
  12. 12.
    Nam JY, Sinha Ray S, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRefGoogle Scholar
  13. 13.
    Liang J-Z, Zhou L, Tang C-Y, Tsui C-P (2013) Crystalline properties of poly (l-lactic acid) composites filled with nanometer calcium carbonate. Compos Part B Eng 45:1646–1650CrossRefGoogle Scholar
  14. 14.
    Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly (l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837CrossRefGoogle Scholar
  15. 15.
    Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39:300–313CrossRefGoogle Scholar
  16. 16.
    Shi X, Zhang G, Phuong TV, Lazzeri A (2015) Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 20:1579–1593. doi:10.3390/molecules20011579 CrossRefGoogle Scholar
  17. 17.
    Xu H-S, Dai XJ, Lamb PR, Li Z-M (2009) Poly (l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352CrossRefGoogle Scholar
  18. 18.
    Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Non-isothermal crystallization behavior of poly (l-lactic acid) in the presence of various additives. Macromol Mater Eng 291:325–335CrossRefGoogle Scholar
  19. 19.
    Nam JY, Okamoto M, Okamoto H et al (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347CrossRefGoogle Scholar
  20. 20.
    Sun J, Yu H, Zhuang X et al (2011) Crystallization behavior of asymmetric PLLA/PDLA blends. J Phys Chem B 115:2864–2869CrossRefGoogle Scholar
  21. 21.
    Xiong Z, Liu G, Zhang X et al (2013) Temperature dependence of crystalline transition of highly-oriented poly (l-lactide)/poly (d-lactide) blend: in-situ synchrotron X-ray scattering study. Polymer 54:964–971CrossRefGoogle Scholar
  22. 22.
    Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly (lactic acid) s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708CrossRefGoogle Scholar
  23. 23.
    Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly (l-lactic acid) crystallization, 2—effects of poly (d-lactic acid) concentration. Macromol Mater Eng 298:270–282CrossRefGoogle Scholar
  24. 24.
    Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly (l-lactic acid) crystallization: effects of molecular weight of poly (d-lactic acid). Polym Int 62:936–948CrossRefGoogle Scholar
  25. 25.
    Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer 48:6855–6866CrossRefGoogle Scholar
  26. 26.
    Xiao HW, Li P, Ren X et al (2010) Isothermal crystallization kinetics and crystal structure of poly (lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci 118:3558–3569CrossRefGoogle Scholar
  27. 27.
    Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45:8239–8251CrossRefGoogle Scholar
  28. 28.
    Gumus S, Ozkoc G, Aytac A (2012) Plasticized and unplasticized PLA/organoclay nanocomposites: short-and long-term thermal properties, morphology, and nonisothermal crystallization behavior. J Appl Polym Sci 123:2837–2848CrossRefGoogle Scholar
  29. 29.
    Xiao H, Yang L, Ren X et al (2010) Kinetics and crystal structure of poly (lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos 31:2057–2068CrossRefGoogle Scholar
  30. 30.
    Zou G-X, Jiao Q-W, Zhang X, Zhao C-X, Li J-C (2015) Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent. J Appl Polym Sci 132:41367. doi:10.1002/app.41367 CrossRefGoogle Scholar
  31. 31.
    You J, Yu W, Zhou C (2014) Accelerated crystallization of poly (lactic acid): synergistic effect of poly (ethylene glycol), dibenzylidene sorbitol, and long-chain branching. Ind Eng Chem Res 53:1097–1107CrossRefGoogle Scholar
  32. 32.
    Li Y, Wu H, Wang Y et al (2010) Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J Polym Sci Part B Polym Phys 48:520–528CrossRefGoogle Scholar
  33. 33.
    Murariu M, Da Silva Ferreira A, Alexandre M, Dubois P (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19:636–646CrossRefGoogle Scholar
  34. 34.
    Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. Nat Fibers Biopolym Biocompos 527–577. (Taylor Francis, FL, USA) Google Scholar
  35. 35.
    Yamane H, Sasai K (2003) Effect of the addition of poly (d-lactic acid) on the thermal property of poly (l-lactic acid). Polymer 44:2569–2575CrossRefGoogle Scholar
  36. 36.
    Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z Z Für Polym 251:980–990CrossRefGoogle Scholar
  37. 37.
    Tsuji H, Fukui I (2003) Enhanced thermal stability of poly (lactide) s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRefGoogle Scholar
  38. 38.
    Pan P, Kai W, Zhu B et al (2007) Polymorphous crystallization and multiple melting behavior of poly (l-lactide): molecular weight dependence. Macromolecules 40:6898–6905CrossRefGoogle Scholar
  39. 39.
    Di Lorenzo ML (2006) The crystallization and melting processes of poly(l-lactic acid). Macromol Symp 234:176–183. doi:10.1002/masy.200650223 CrossRefGoogle Scholar
  40. 40.
    Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640. doi:10.1016/j.progpolymsci.2009.01.003 CrossRefGoogle Scholar
  41. 41.
    Legras R, Bailly C, Daumerie M et al (1984) Chemical nucleation, a new concept applied to the mechanism of action of organic acid salts on the crystallization of polyethylene terephthalate and bisphenol—a polycarbonate. Polymer 25:835–844CrossRefGoogle Scholar
  42. 42.
    Nagarajan V, Zhang K, Misra M, Mohanty AK (2015) Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl Mater Interfaces 7:11203–11214CrossRefGoogle Scholar
  43. 43.
    Rosen M, Franklin LC (1981) Process for the interconversion of crystalline forms of ethylene bis-stearamide. Patent: EP 0023088 A1, 3 Feb 1981Google Scholar
  44. 44.
    Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly (l-lactide). J Appl Polym Sci 64:911–919CrossRefGoogle Scholar
  45. 45.
    Barrau S, Vanmansart C, Moreau M et al (2011) Crystallization behavior of carbon nanotube- polylactide nanocomposites. Macromolecules 44:6496–6502CrossRefGoogle Scholar
  46. 46.
    Yu L, Liu H, Dean K, Chen L (2008) Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. J Polym Sci Part B Polym Phys 46:2630–2636CrossRefGoogle Scholar
  47. 47.
    Takada M, Hasegawa S, Ohshima M (2004) Crystallization kinetics of poly (l-lactide) in contact with pressurized CO2. Polym Eng Sci 44:186–196CrossRefGoogle Scholar
  48. 48.
    Mihai M, Huneault MA, Favis BD, Li H (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920CrossRefGoogle Scholar
  49. 49.
    Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2012) Synchronous and separate homo-crystallization of enantiomeric poly(l-lactic acid)/poly(d-lactic acid) blends. Polymer 53:747–754. doi:10.1016/j.polymer.2011.12.023 CrossRefGoogle Scholar
  50. 50.
    Tabi T, Sajó IE, Szabo F et al (2010) Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett 4:659–668CrossRefGoogle Scholar
  51. 51.
    Obata Y, Sumitomo T, Ijitsu T et al (2001) The effect of talc on the crystal orientation in polypropylene/ethylene-propylene rubber/talc polymer blends in injection molding. Polym Eng Sci 41:408–416CrossRefGoogle Scholar
  52. 52.
    Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly (l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357CrossRefGoogle Scholar
  53. 53.
    Abe H, Kikkawa Y, Inoue Y, Doi Y (2001) Morphological and kinetic analyses of regime transition for poly [(S)-lactide] crystal growth. Biomacromol 2:1007–1014CrossRefGoogle Scholar
  54. 54.
    Sun J, Hong Z, Yang L et al (2004) Study on crystalline morphology of poly (l-lactide)-poly (ethylene glycol) diblock copolymer. Polymer 45:5969–5977CrossRefGoogle Scholar
  55. 55.
    Yang J, Zhao T, Liu L et al (2006) Isothermal crystallization behavior of the poly (l-lactide) block in poly (l-lactide)-poly (ethylene glycol) diblock copolymers: Influence of the PEG block as a diluted solvent. Polym J 38:1251–1257CrossRefGoogle Scholar
  56. 56.
    Huang S, Jiang S, An L, Chen X (2008) Crystallization and morphology of poly (ethylene oxide-b-lactide) crystalline–crystalline diblock copolymers. J Polym Sci Part B Polym Phys 46:1400–1411CrossRefGoogle Scholar
  57. 57.
    Shi Y, Shao L, Yang J et al (2013) Highly improved crystallization behavior of poly (l-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym Adv Technol 24:42–50CrossRefGoogle Scholar
  58. 58.
    Zhao H, Bian Y, Xu M et al (2014) Enhancing the crystallization of poly (l-lactide) using a montmorillonitic substrate favoring nucleation. CrystEngComm 16:3896–3905CrossRefGoogle Scholar
  59. 59.
    Wang S, Han C, Bian J et al (2011) Morphology, crystallization and enzymatic hydrolysis of poly (l-lactide) nucleated using layered metal phosphonates. Polym Int 60:284–295CrossRefGoogle Scholar
  60. 60.
    Yin H-Y, Wei X-F, Bao R-Y et al (2015) High-melting-point crystals of poly (l-lactic acid)(PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm 17:2310–2320CrossRefGoogle Scholar
  61. 61.
    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26:222–231CrossRefGoogle Scholar
  62. 62.
    Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  63. 63.
    Silvestre C, Di Lorenzo ML, Di Pace E (2002) Crystallization of polyolefins. In: Vasile C (ed) Handbook of polyolefins, chap 9. Marcel Dekker, Inc, New York. doi:10.1201/9780203908716
  64. 64.
    He Y, Fan Z, Hu Y et al (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly (l-lactide) with different molecular weights. Eur Polym J 43:4431–4439CrossRefGoogle Scholar
  65. 65.
    Caroline Abler (2011) Talc in green plastics. SPE Eurotec 2011 Conference. http://www.imerystalc.com
  66. 66.
    Miyata T, Masuko T (1998) Crystallization behaviour of poly (l-lactide). Polymer 39:5515–5521CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jon Anakabe
    • 1
  • A. M. Zaldua Huici
    • 1
  • Arantxa Eceiza
    • 2
  • Aitor Arbelaiz
    • 2
  • Luc Avérous
    • 3
  1. 1.Leartiker-Lea Artibai Ikastetxea S. Coop.Markina-XemeinSpain
  2. 2.‘Materials + Technologies’ Group, Chemical and Environmental Engineering Department, Faculty of Engineering, GipuzkoaUniversity of the Basque Country UPV/EHUDonostia-San SebastiánSpain
  3. 3.BioTeam/ICPEES-ECPM, UMR CNRS 7515Université de StrasbourgStrasbourg Cedex 2France

Personalised recommendations