Advertisement

Polymer Bulletin

, Volume 74, Issue 11, pp 4525–4536 | Cite as

Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging

  • Zengfang Huang
  • Xiqi Zhang
  • Xiaoyong Zhang
  • Shiqi Wang
  • Bin Yang
  • Ke Wang
  • Jinying Yuan
  • Lei Tao
  • Yen Wei
Original Paper

Abstract

In this paper, a fluorescein methacryloyl monomer (named Flu-MA) was firstly fabricated by the esterification reaction of fluorescein and methacryloyl chloride; subsequently, a novel amphiphilic fluorescent copolymer (Flu-PEG) with smart pH sensitivity was successfully prepared by RAFT copolymerizing of Flu-MA and poly(ethylene glycol) monomethacrylate (PEGMA). The result of 1H NMR and FTIR implied that both Flu-MA and PEGMA monomers were successfully incorporated into Flu-PEG copolymers, the molecular weight (M n) of which was about 39,800 with polydispersity index (PDI) as about 1.30. In aqueous solution, Flu-PEG copolymers could self-assemble into fluorescent organic nanoparticles (FONs) with about 200 nm diameters due to high water dispersibility and good fluorescence, respectively, endowed by PEGMA and Flu-MA, the fluorescence intensity of which was high sensitive to pH value of solution. More importantly, due to their high water dispersibility, excellent biocompatibility and good fluorescence, the as-prepared Flu-PEG FONs were high attractive for the application in cell imaging.

Graphical abstract

A novel amphiphilic fluorescent copolymer (Flu-PEG) with smart pH-sensitivity was successfully fabricated by RAFT copolymerizing of Flu-MA and PEGMA, which showed high water dispersibility, uniform size and excellent biocompatibility, making them be highly potential for bioimaging application.

Keywords

RAFT polymerization pH Sensitivity Cell imaging Amphiphilic fluorescent copolymers 

Notes

Acknowledgements

This research was financially supported by the National Science Foundation of China (Nos. 21474057, 21104039, 21134004, 51363016), the National 973 Project (Nos. 2011CB935700), and the Science and Technology Project of Zhongshan City of China (2014A2FC309).

References

  1. 1.
    Zhang XQ, Zhang XY, Yang B, Wei Y (2014) Facile fabrication of aggregation-induced emission based red fluorescent organic nanoparticles for cell imaging. Chin J Polym Sci 32(7):871–879CrossRefGoogle Scholar
  2. 2.
    Ji XF, Wang P, Wang H, Huang FH (2015) A fluorescent supramolecular crosslinked polymer gel formed by crown ether based host-guest interactions and aggregation induced emission. Chin J Polym Sci 33(6):890–898CrossRefGoogle Scholar
  3. 3.
    Kim SH, Shim JW, Yang SM (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50(5):1171–1174CrossRefGoogle Scholar
  4. 4.
    Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50(18):4056–4066CrossRefGoogle Scholar
  5. 5.
    Li CH, Liu SY (2012) Polymeric assemblies and nanoparticles with stimuli-responsive fluorescence emission characteristics. Chem Commun 48(27):3262–3278CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Zhao X, Sun C, Li J, Zhu R, Gu ZZ (2008) Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem 80(5):1598–1605CrossRefGoogle Scholar
  7. 7.
    Li J, Zhao X, Hu J, Xu M, Gu ZZ (2009) Colloidal crystal beads coated with multicolor CdTe quantum dots: microcarriers for optical encoding and fluorescence enhancement. J Mater Chem 19(36):6492–6497CrossRefGoogle Scholar
  8. 8.
    Liu B, Yang FK, Liu GY, Yang XL (2012) Synthesis of CdS/SiO2/polymer tri-layer fluorescent nanospheres with functional polymer shells. Chin J Polym Sci 30(3):359–369CrossRefGoogle Scholar
  9. 9.
    Zhang XQ, Zhang XY, Yang B, Wei Y (2014) Tetraphenylethene end-capped polyethylenimine fluorescent nanoparticles for cell imaging. Chin J Polym Sci 32(11):1479–1488CrossRefGoogle Scholar
  10. 10.
    Herz E, Burns A, Bonner D, Wiesner U (2009) Large stokes-shift fluorescent silica nanoparticles with enhanced emission over free dye for single excitation multiplexing. Macromol Rapid Commun 30(22):1907–1910CrossRefGoogle Scholar
  11. 11.
    Bao B, Li FY, Li H, Chen LF, Ye CQ, Zhou JM, Wang JX, Song YL, Jiang L (2013) pH-responsive dual fluorescent core-shell microspheres fabricated via a one-step emulsion polymerization. J Mater Chem C 1(24):3802–3807CrossRefGoogle Scholar
  12. 12.
    Zhang XQ, Zhang XY, Yang B, Hui JF, Liu MY, Chi ZG, Liu SW, Xu JR, Wei Y (2014) A novel method for preparing AIE dye based crosslinked fluorescent polymeric nanoparticles for cell imaging. Polym Chem 5(3):683–688CrossRefGoogle Scholar
  13. 13.
    Zhang XQ, Zhang XY, Yang B, Hui JF, Liu MY, Wei Y (2014) Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloid Surf B 116:739–744CrossRefGoogle Scholar
  14. 14.
    Zhang XQ, Zhang XY, Yang B, Hui JF, Liu MY, Chi ZG, Liu SW, Xu JR, Wei Y (2014) Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. J Mater Chem C 2(5):816–820CrossRefGoogle Scholar
  15. 15.
    Zhang XY, Zhang XQ, Yang B, Liu MY, Liu WY, Chen YW, Wei Y (2014) Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym Chem 5(2):399–404CrossRefGoogle Scholar
  16. 16.
    Huang ZF, Zhang XQ, Zhang XY, Wang SQ, Yang B, Wang K, Yuan JY, Tao L, Wei Y (2015) Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. RSC Adv 5(81):65884–65889CrossRefGoogle Scholar
  17. 17.
    Zhang XY, Zhang XQ, Yang B, Liu MY, Liu WY, Chen YW, Wei Y (2014) Polymerizable aggregation-induced emission dye-based fluorescent nanoparticles for cell imaging applications. Polym Chem 5(2):356–360CrossRefGoogle Scholar
  18. 18.
    Kulai I, Brusylovets O, Voitenko Z, Harrisson S, Mazières S, Destarac M (2015) RAFT polymerization with triphenylstannylcarbodithioates (Sn-RAFT). ACS Macro Lett 4(8):809–813CrossRefGoogle Scholar
  19. 19.
    Hill MR, Carmean RN, Sumerlin BS (2015) Expanding the scope of RAFT polymerization: recent advances and new horizons. Macromolecules 48(16):5459–5469CrossRefGoogle Scholar
  20. 20.
    Koiry BP, Chakrabarty A, Singha NK (2015) Fluorinated amphiphilic block copolymers via RAFT polymerization and their application as surf-RAFT agent in miniemulsion polymerization. RSC Adv 5(20):15461–15468CrossRefGoogle Scholar
  21. 21.
    Das D, Srinivasan S, Kelly AM, Chiu DY, Daugherty BK, Ratner DM, Stayton PS, Convertine AJ (2016) RAFT polymerization of ciprofloxacin prodrug monomers for the controlled intracellular delivery of antibiotics. Polym Chem 7(4):826–837CrossRefGoogle Scholar
  22. 22.
    Li JH, Dong RC, Wang XY, Xiong H, Xu SF, Shen DZ, Song XL, Chen LX (2015) One-pot synthesis of magnetic molecularly imprinted microspheres by RAFT precipitation polymerization for the fast and selective removal of 17 β-estradiol. RSC Adv 5(14):10611–10618CrossRefGoogle Scholar
  23. 23.
    Liu ZC, Hu ZY, Liu Y, Meng MJ, Ni L, Meng XG, Zhong GX, Liu FF, Gao YM (2015) Monodisperse magnetic ion imprinted polymeric microparticles prepared by RAFT polymerization based on g-Fe2O3@meso-SiO2 nanospheres for selective solid-phase extraction of Cu(II) in water samples. RSC Adv 5(65):52369–52381CrossRefGoogle Scholar
  24. 24.
    Huang ZF, Fu CK, Wang SQ, Yang B, Wang X, Zhang QS, Yuan JY, Tao L, Wei Y (2015) Optically active polymer via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis and its application in hybrid silica particles. Macromol Chem Phys 216(13):1483–1489CrossRefGoogle Scholar
  25. 25.
    Sk B, Patra A (2016) C–C coupling over Schiff base condensation: a rational design strategy for a strongly fluorescent molecular material. Cryst Eng Comm 18(23):4290–4294CrossRefGoogle Scholar
  26. 26.
    Hu RR, Leung NLC, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43(13):4494–4562CrossRefGoogle Scholar
  27. 27.
    Huang ZF, Zhang XQ, Zhang XY, Wang SQ, Yang B, Wang K, Yuan JY, Tao L, Wei Y (2015) Synthesis of amphiphilic fluorescent PEGylation AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Adv 5(109):89472–89477CrossRefGoogle Scholar
  28. 28.
    Huang ZF, Zhang XQ, Zhang XY, Fu CK, Wang K, Yuan JY, Tao L, Wei Y (2015) Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polym Chem 6(4):607–612CrossRefGoogle Scholar
  29. 29.
    Huang ZF, Zhang XQ, Zhang XY, Yang B, Zhang YL, Wang K, Yuan JY, Tao L, Wei Y (2015) One-pot synthesis and biological imaging application of amphiphilic fluorescent copolymer via combination of RAFT polymerization and schiff base reaction. Polym Chem 6(11):2133–2138CrossRefGoogle Scholar
  30. 30.
    Kim HN, Swamy KMK, Yoon J (2011) Study on various fluorescein derivatives as pH sensors. Tetra Lett 52(18):2340–2343CrossRefGoogle Scholar
  31. 31.
    Shi WY, He S, Wei M, Evans DG, Duan X (2010) Optical pH sensor with rapid response based on a fluorescein-intercalated layered double hydroxide. Adv Funct Mater 20(22):3856–3863CrossRefGoogle Scholar
  32. 32.
    Guan XL, Lai SJ (2012) Synthesis and luminescence properties of bifunctional water-soluble luminescence polymer materials. Acta Polym Sin 2:187–193CrossRefGoogle Scholar
  33. 33.
    Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127(13):4888–4894CrossRefGoogle Scholar
  34. 34.
    Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) Rational design of fluorescein-based fluorescence probes, mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123(11):2530–2536CrossRefGoogle Scholar
  35. 35.
    Saha A, Basiruddin SK, Sarkar R, Pradhan N, Jana NR (2009) Functionalized plasmonic-fluorescent nanoparticles for imaging and detection. J Phys Chem C 113(43):18492–18498CrossRefGoogle Scholar
  36. 36.
    Chang IP, Hwang KC, Chiang CS (2008) Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J Am Chem Soc 130(46):15476–15481CrossRefGoogle Scholar
  37. 37.
    Basiruddin SK, Saha A, Pradhan N, Jana NR (2010) Functionalized gold nanorod solution via reverse micelle based polyacrylate coating. Langmuir 26(10):7475–7481CrossRefGoogle Scholar
  38. 38.
    Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009) Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10(4):983–993CrossRefGoogle Scholar
  39. 39.
    Tao L, Liu J, Davis T (2009) Branched polymer-protein conjugates made from mid-chain-functional P(HPMA). Biomacromolecules 10(10):2847–2851CrossRefGoogle Scholar
  40. 40.
    Wang HL, Zhou GD, Gai HW, Chen XQ (2012) A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem Commun 48(67):8341–8343CrossRefGoogle Scholar
  41. 41.
    Li G, Zhu XL, Cheng ZP, Zhang W, Sun B (2008) Synthesis of poly(methyl methacrylate) labeled with fluorescein moieties via atom transfer radical polymerization. J Macromol Sci A 45(6):495–501CrossRefGoogle Scholar
  42. 42.
    Zhang XY, Yin JL, Peng C, Hu WQ, Zhu ZY, Li WX, Fan CH, Huang Q (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49(3):986–995CrossRefGoogle Scholar
  43. 43.
    Zhang XY, Wang SQ, Zhu CY, Liu MY, Ji Y, Feng L, Tao L, Wei Y (2013) Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. J Colloid Interf Sci 397:39–44CrossRefGoogle Scholar
  44. 44.
    Zhang XQ, Zhang XY, Wang SQ, Liu MY, Tao L, Wei Y (2013) Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: facile preparation and cell imaging. Nanoscale 5(1):147–150CrossRefGoogle Scholar
  45. 45.
    Zhang XY, Hui JF, Yang B, Yang Y, Fan DD, Liu MY, Tao L, Wei Y (2013) PEGylation of fluoridated hydroxyapatite (FAp): Ln3+ nanorods for cell imaging. Polym Chem 4(15):4120–4125CrossRefGoogle Scholar
  46. 46.
    Yang B, Zhang YL, Zhang XY, Tao L, Li SX, Wei Y (2012) Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym Chem 3(2):3235–3238CrossRefGoogle Scholar
  47. 47.
    Zhang XY, Wang SQ, Fu CK, Feng L, Ji Y, Tao L, Li SX, Wei Y (2012) PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polym Chem 3(10):2716–2719CrossRefGoogle Scholar
  48. 48.
    Wang BY, Guan XL, Hu YL, Su ZX (2008) Synthesis and photophysical behavior of a water-soluble fluorescein-bearing polymer for Fe3+ ion sensing. J Polym Res 15(6):427–433CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Chemistry and Biology, Zhongshan InstituteUniversity of Electronic Science and Technology of ChinaZhongshanPeople’s Republic of China
  2. 2.Department of Chemistry, The Tsinghua Center for Frontier Polymer ResearchTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations