Skip to main content
Log in

Polyacrylamide-grafted legume starch for wastewater treatment: synthesis and performance comparison

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyacrylamide as traditional flocculant begins to draw the public awareness because of its non-biodegradable nature which may cause the long-term environmental degradation problems. A new high-efficient flocculant was synthesized by legume starch and acrylamide to satisfy the demand of coalmine wastewater treatment. Grafting acrylamide onto mung bean starch was investigated and the characterizations of elemental analysis, scanning electron microscopy, gel permeation chromatography, Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and nuclear magnetic resonance spectrometer were conducted. The characterization results of the new flocculant prove that acrylamide has grafted onto the mung bean starch molecule chains successfully. Experimental results indicate the optimal synthesis parameters of the new flocculant are: mung bean starch 50 g/L (ethanol solvent), acrylamide 100 g/L, ceric ammonium nitrate 12 g/L, gelatinization temperature 70 °C and copolymerization temperature 70 °C. We also measured and evaluated the performance of the new flocculant on wastewater treatment, and the optimal dosage of the new flocculant is 20 mg/L, with a prominent transmittance of 98.1% and turbidity of 7.82. Experimental results have demonstrated the graft copolymer of acrylamide and mung bean starch owns an outstanding flocculation effect than the traditional polyacrylamide and polyaluminum chloride. The new flocculant has a few features such as environmentally friendly, easy to degrade, fasting sedimentation and low cost, which is especially suitable for the occasions of rigorous environmental requirements and is bound to have broad application prospect for coalmine wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo L, Zhang L, Hu CJ, Lei JF (2014) Status analysis and measures taken for mine water management in China. J China Coal Soc 39:484–489. doi:10.13225/j.cnki.jccs.2013.0983

    Google Scholar 

  2. National Bureau of Statistics of the People’s Republic of China (2015) China statistical yearbook China. Statistical Publishing House, Beijing

    Google Scholar 

  3. Dao VH, Cameron NR, Saito K (2016) Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym Chem 7:11–25. doi:10.1039/c5py01572c

    Article  CAS  Google Scholar 

  4. Lin C, Hong B, Xu K, Zhang MY, An HY, Tan Y, Wang PX (2014) Synthesis and application of salt tolerance amphoteric hydrophobic associative flocculants. Polym Bull 71:3051–3065. doi:10.1007/s00289-014-1237-8

    Article  Google Scholar 

  5. Landim AS, Filho GR, Assuncao RMN (2007) Use of polystyrene sulfonate produced from waste plastic cups as an auxiliary agent of coagulation, flocculation and flotation for water and wastewater treatment in municipal department of water and wastewater in Uberlandia-MG, Brazil. Polym Bull 58:457–463. doi:10.1007/s00289-006-0669-1

    Article  CAS  Google Scholar 

  6. Salehizadeh H, Yan N (2014) Recent advances in extracellular biopolymer flocculants. Biotechnol Adv 32:1506–1522. doi:10.1016/j.biotechadv.2014.10.004

    Article  CAS  Google Scholar 

  7. Gao BY, Yue QY, Wang Y, Zhou WZ (2007) Color removal from dye-containing wastewater by magnesium chloride. J Environ Manage 82:167–172. doi:10.1016/j.jenvman.2005.12.019

    Article  CAS  Google Scholar 

  8. Xing W, Ngo HH, Guo WS, Listowski A, Cullum P (2012) Optimization of an integrated sponge—granular activated carbon fluidized bed bioreactor as pretreatment to microfiltration in wastewater reuse. Bioresour Technol 113(214):218. doi:10.1016/j.biortech.2012.02.032

    Google Scholar 

  9. Khan MU, Reddy KR, SnguanwongchaiT Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599–1610. doi:10.1007/s00396-016-3922-7

    Article  CAS  Google Scholar 

  10. Reddy KR, Gomes VG, Hassan M (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater Res Express 1:015012. doi:10.1088/2053-1591/1/1/015012

    Article  Google Scholar 

  11. Reddy KR, Lee KP, Kim JY, Lee Y (2008) Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2-polyaniline core-shell composite nanoparticles: physical properties. J Nanosci Nanotech 8:5632–5639. doi:10.1166/jnn.2008.209

    Article  CAS  Google Scholar 

  12. Wichaita W, Samart C, Yoosuk B, Kongparakul S (2015) Cellulose graft poly(acrylic acid) and polyacrylamide: grafting efficiency and heavy metal adsorption performance. Macromol Symp 354:84–90. doi:10.1002/masy.201400119

    Article  CAS  Google Scholar 

  13. Rahul R, Jha U, Sen G, Mishra S (2014) A novel polymeric flocculant based on polyacrylamide grafted inulin: aqueous microwave assisted synthesis. Carbohyd Polym 99:11–21. doi:10.1016/j.carbpol.2013.07.082

    Article  CAS  Google Scholar 

  14. Dharani M, Balasubramanian S (2016) Synthesis, characterization and application of acryloyl chitosan anchored copolymer towards algae flocculation. Carbohyd Polym 152:459–467. doi:10.1016/j.carbpol.2016.07.031

    Article  Google Scholar 

  15. Reddy KR, Sin BC, Ryu KS, Kim JC, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603. doi:10.1016/j.synthmet.2008.11.030

    Article  CAS  Google Scholar 

  16. Tian DT, Xie HQ (2008) Synthesis and flocculation characteristics of konjac glucomannan-g-polyacrylamide. Polym Bull 61:277–285. doi:10.1007/s00289-008-0950-6

    Article  CAS  Google Scholar 

  17. Bharti S, Mishra S, Sen G (2013) Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: its application as flocculant for wastewater treatment. Carbohyd Polym 93:528–536. doi:10.1016/j.carbpol.2012.11.072

    Article  CAS  Google Scholar 

  18. Sorour M, El-Sayed M, El Moneem NA, Talaat H, Shaalan H, El Marsafy S (2013) Free radical grafting kinetics of acrylamide onto a blend of starch/chitosan/alginate. Carbohyd Polym 98:460–464. doi:10.1016/j.carbpol.2013.05.067

    Article  CAS  Google Scholar 

  19. Lv XH, Song WQ, Ti YZ, Qu LB, Zhao ZW, Zheng HJ (2013) Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch. Carbohyd Polym 92:388–393. doi:10.1016/j.carbpol.2012.10.002

    Article  CAS  Google Scholar 

  20. Bharti S, Mishra S, Narendra L (2016) Comparative studies on the high performance flocculating agent of novel polyacrylamide grafted oatmeal. Adv Polym Tech 25:349–362. doi:10.1002/adv.21540

    Google Scholar 

  21. Choy SY, Prasad KN, Wu TY, Raghunandan ME, Ramanan RN (2016) Performance of conventional starches as natural coagulants for turbidity removal. Ecol Eng 94:352–364. doi:10.1016/j.ecoleng.2016.05.082

    Article  Google Scholar 

  22. Ren WJ, Zhang AQ, Qin SY, Li ZK (2016) Synthesis and evaluation of a novel cationic konjac glucomannan-based flocculant. Carbohyd Polym 144:238–244. doi:10.1016/j.carbpol.2016.02.061

    Article  CAS  Google Scholar 

  23. Zou YQ, Li SS, Wang YQ, Yuan CX, Yuan WJ, Zheng L, Han XL (2016) Performance of conventional starches as natural coagulants for turbidity removal. J Appl Polym Sci 10:43922–43932. doi:10.1002/app.43922

    Google Scholar 

  24. Fan DC (2013) Effect of starch properties on eating quality of several starch noodles. Southwest University, Chongqing

    Google Scholar 

  25. Liu XH, Zheng LX, Zheng LM, Ou CC, Ye CX, Wang AL (2013) Determination of amylose and amylopectin in the commonly used starch materials by dual-wavelength spectrophotometry Guangdong. Agr Sci 18:97–100. doi:10.16768/j.issn.1004-874x.2013.18.010

    Google Scholar 

  26. Sen G, Kumar R, Ghosh S, Pal S (2009) A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohyd Polym 77:822–831. doi:10.1016/j.carbpol.2009.03.007

    Article  CAS  Google Scholar 

  27. Pala S, Ghosh S, Sen G, Jha U, Singh RP (2009) Cationic tamarind kernel polysaccharide (Cat TKP): a novel polymeric flocculant for the treatment of textile industry wastewater. Int J Biol Macromol 45:51–523. doi:10.1016/j.ijbiomac.2009.08.004

    Google Scholar 

  28. Reddy KR, Raghu AV, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12:109–118. doi:10.1163/156855509X412054

    Article  CAS  Google Scholar 

  29. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis[methylylidenenitrilo]} diphenol. Polym Bull 60:609–616. doi:10.1007/s00289-008-0896-8

    Article  CAS  Google Scholar 

  30. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51. doi:10.1016/j.jcis.2013.08.006

    Article  CAS  Google Scholar 

  31. Rani P, Sen G, Mishra S, Jha U (2012) Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohyd Polym 89:275–281. doi:10.1016/j.carbpol.2012.03.009

    Article  CAS  Google Scholar 

  32. Wang S, Wang Q, Fan XR, Xu J, Zhang Y, Yuan JG, Jin HL, Cavaco-Paulo A (2016) Synthesis and characterization of starch-poly(methyl acrylate) graft copolymers using horseradish peroxidase. Carbohyd Polym 136:1010–1016. doi:10.1016/j.carbpol.2015.09.110

    Article  CAS  Google Scholar 

  33. Kc Gupta, Khandekar K (2006) Graft copolymerization of acrylamide onto cellulose in presence of comonomer using ceric ammonium nitrate as initiator. J Appl Polym Sci 101:2546–2558. doi:10.1002/app.23919

    Article  Google Scholar 

  34. Reddy KR, Karthik KV, Prasad SBB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. doi:10.1016/j.poly.2016.08.029

    Article  CAS  Google Scholar 

  35. Ma YF (2012) Synthesis of cationic starch flocculant and its performance when treating coal mine wastewater. Northwest University, Xi’an

  36. Pour ZS, Ghaemy M (2015) Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly(vinyl alcohol)/carboxymethyl starch-g-poly(vinyl imidazole). RSC Adv 5:64106–64118. doi:10.1039/c5ra08025h

    Article  Google Scholar 

  37. Showkat AM, Zhang YP, Kim MS, Gopalan AI, Reddy KR, Lee KP (2007) Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bull. Korean Chem. Soc 28:1985–1992

    Article  CAS  Google Scholar 

  38. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489:1–16. doi:10.1016/j.apcata.2014.10.001

    Article  CAS  Google Scholar 

  39. Reddy KR, Kazuya N, Tsuyoshi O, Taketoshi M, Donald AT, Akira F (2011) Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotech 11:3692–3695. doi:10.1166/jnn.2011.3805

    Article  CAS  Google Scholar 

  40. Chouyyok W, Panpranot J, Thanachayanant C, Prichanont S (2009) Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J Mol Catal B Enzyme 56:246–252. doi:10.1016/j.molcath.2008.05.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the national natural science foundation of China (21276209) and natural science fund of education department of Shaanxi province (16JK1764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zheng, L., Wang, Y. et al. Polyacrylamide-grafted legume starch for wastewater treatment: synthesis and performance comparison. Polym. Bull. 74, 4371–4392 (2017). https://doi.org/10.1007/s00289-017-1959-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1959-5

Keywords

Navigation