Skip to main content
Log in

Investigating the crystallization, melting behavior, and thermal stability of poly(l-lactic acid) using aromatic isoniazid derivative as nucleating agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The poor crystallization performance is the common challenge for semicrystalline polymers. In this work, a aromatic isoniazid derivative (DI), derived from isoniazid and 1,4-dicarboxybenzene, was synthesized to serve as a nucleating agent for poly(l-lactic acid) (PLLA), and the crystallization behavior, melting behavior, and thermal stability of PLLA/DI were investigated through a series of measurements. The non-isothermal crystallization behavior showed that the incorporation of DI significantly promoted the crystallization of PLLA in cooling of 1 °C/min; however, the nucleating effectiveness was also evidently affected by the cooling rate. The effect of DI concentration on non-isothermal crystallization of PLLA indicated that 3 wt% DI exhibited the best crystallization acceleration effectiveness, and the non-isothermal crystallization enthalpy of PLLA/3% DI in cooling was considerably enhanced up to 330 times with respect to the primary PLLA. Both XRD and the relevant melting behavior measurements further confirmed the advanced promoting crystallization effect of DI for PLLA. In addition, the measurement also showed that the addition of DI could not change the crystalline form of PLLA, and the double melting peaks were attributed to the melting-recrystallization mechanism. Thermal stability indicated that the thermal decomposition behavior of PLLA did not depend on the DI concentration; however, the onset decomposition temperature decreased with the increase of DI concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS (2007) Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide. Polymer 48:1688–1694

    Article  CAS  Google Scholar 

  2. Xiao HQ, Guo D, Bao JJ (2015) Synergistic effects of N, N’-bis (benzoyl) sebacic acid dihydrazide and talc on the physical and mechanical behaviors of poly(l-latic acid). J Appl Polym Sci 132:41454

    Google Scholar 

  3. Mallick SP, Pal K, Rastogi A, Srivastava P (2016) Evaluation of poly(l-lactide) and chitosan composite scaffolds for cartilage tissue regeneration. Des Monomers Polym 19(3):271–282

    Article  CAS  Google Scholar 

  4. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12

    Article  Google Scholar 

  5. Tham WL, Poh BT, Ishak ZAM, Chow WS (2015) Water Absorption kinetics and hygrothermal aging of poly(lactic acid) containing halloysite nanoclay and maleated rubber. J Polym Environ 23:242–250

    Article  CAS  Google Scholar 

  6. Burks T, Akthar F, Saleemi M, Avila M, Kiros Y (2015) ZnO-PLLA nanofibers nanocomposite for continuous flow mode purification of water from Cr(VI). J Environ Publ Health 2015:687094

    Article  CAS  Google Scholar 

  7. Songtipya L, Thies MC, Sane A (2016) Effect of rapid expansion of subcritical solutions processing conditions on loading capacity of tetrahydrocurcumin encapsulated in poly(l-lactide) particles. J Supercrit Fluids 113:119–127

    Article  CAS  Google Scholar 

  8. Tran HT, Matsusaki M, Akashi M, Vu ND (2016) Enhanced thermal stability of Polylactide by terminal conjugation groups. J Electron Mater 45(5):2388–2394

    Article  CAS  Google Scholar 

  9. Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48(14):4213–4225

    Article  CAS  Google Scholar 

  10. Wu NJ, Wang HH (2013) Effect of zinc phenylphosphonate on the crystallization behavior of poly(l-lactide). J Appl Polym Sci 130(4):2744–2752

    Article  CAS  Google Scholar 

  11. Tsujimoto T, Nishio S, Uyama H (2015) Bio-based branched polymer bearing castor oil core as a nucleating agent for poly(l-lactic acid). J Polym Environ 23(4):559–565

    Article  CAS  Google Scholar 

  12. Yan YQ, Zhu J, Yan SF, Chen XS, Yin JB (2015) Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(l-lactic acid). Polymer 67:63–71

    Article  Google Scholar 

  13. Li Y, Xin SY, Bian YJ, Xu K, Han CY, Dong LS (2016) The physical properties of poly(l-lactide) and functionalized eggshellpowder composites. Int J Biol Macromol 85:63–73

    Article  CAS  Google Scholar 

  14. Nagarajan V, Mohanty AK, Misra M (2016) Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative. J Appl Polym Sci 133(28):43673

    Article  Google Scholar 

  15. Qi ZF, Yang Y, Xiong Z, Deng J, Zhang RY, Zhu J (2015) Effect of aliphatic diacyl adipic dihydrazides on the crystallization of poly(lactic acid). J Appl Polym Sci 132:42028

    Google Scholar 

  16. Bai HW, Huang CM, Xiu H, Zhang Q, Fu Q (2014) Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55:6924–6934

    Article  CAS  Google Scholar 

  17. Carbone MJ, Vanhalle M, Goderis B, Van Puyvelde P (2015) Amino acids and poly(amino acids) as nucleating agents for poly(lactic acid). J Polym Eng 35(2):169–180

    Article  CAS  Google Scholar 

  18. Ma PM, Xu YS, Shen TF, Dong WF, Chen MQ, Lemstra PJ (2015) Tailoring the crystallization behavior of poly(l-lactide) with self-assembly-type oxalamide compounds as nucleators: 1. Effect of terminal configuration of the nucleators. Eur Polym J 70:400–411

    Article  CAS  Google Scholar 

  19. Shi YQ, Xin Z, Lu YY, Zhou S (2015) Study on crystallization of poly (l-lactic acid) nucleated with p-tert-butylcalix[4]arene inclusion complex. J Chem Ind Eng (China) 66(9):3762–3768 (in Chinese)

    CAS  Google Scholar 

  20. Xing Q, Li RB, Dong X, Luo FL, Kuang X, Wang DJ, Zhang LY (2015) Enhanced crystallization rate of poly(l-lactide) mediated by a hydrazide compound: nucleating mechanism study. Macromol Chem Phys 216:1134–1145

    Article  CAS  Google Scholar 

  21. Cai YH, Yan SF, Yin JB, Fan YQ, Chen XS (2011) Crystallization behavior of biodegradable poly(l-lactic acid) filled with a powerful nucleating agent-N, N’-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci 121(3):1408–1416

    Article  CAS  Google Scholar 

  22. Cai YH, Yan SF, Fan YQ, Yu ZY, Chen XS, Yin JB (2012) The nucleation effect of N, N’-bis(benzoyl) alkyl diacid dihydrazide on crystallization of biodegradable poly(l-lactic acid). Iran Polym J 21(7):435–444

    Article  CAS  Google Scholar 

  23. Cai YH, Zhao LS, Zhang YH (2015) Role of N, N’-bis(1H-Benzotriazole) adipic acid acethydrazide in crystallization nucleating effect and melting behavior of poly(l-lactic acid). J Polym Res 22:246

    Article  Google Scholar 

  24. Cai YH, Tang Y, Zhao LS (2015) Poly(l-lactic acid) with organic nucleating agent N, N, N′-tris(1H-benzotriazole) trimesinic acid acethydrazide: Crystallization and melting behavior. J Appl Polym Sci 132(32):42402

    Article  Google Scholar 

  25. Huang SM, Hwang JJ, Liu HJ, Lin LH (2010) Crystallization behavior of poly(l-lactic acid)/montmorillonite nanocomposites. J Appl Polym Sci 117(1):434–442

    CAS  Google Scholar 

  26. Su ZZ, Guo WH, Liu YJ, Li QY, Wu CF (2009) Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull 62:629–642

    Article  CAS  Google Scholar 

  27. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 44:5681–5689

    Article  CAS  Google Scholar 

  28. Li CL, Dou Q, Bai ZF, Lu QL (2015) Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim 122:407–417

    Article  CAS  Google Scholar 

  29. Hergeth WD, Lebek W, Stettin E, Witkowski K, Schmutzler K (1992) Particle formation in emulsion polymerization, 2. Aggregation of primary particles. Die Makromol Chem 193(7):1607–1621

    Article  CAS  Google Scholar 

  30. Li YL, Wang Y, Liu L, Han L, Xiang FM, Zhou ZW (2009) Crystallization improvement of poly(l-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B: Polym Phys 47:326–339

    Article  CAS  Google Scholar 

  31. Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY, Kong DC, Jang GW (2010) Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polym Degrad Stab 95(8):1292–1298

    Article  CAS  Google Scholar 

  32. Sonseca A, Peponi L, Sahuquillo O, Kenny JM, Gimenez E (2012) Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: study on the morphology, crystallinity structure and thermal stability. Polym Degrad Stab 97(10):2052–2059

    Article  CAS  Google Scholar 

  33. Dobreva T, Peren JM, Perez E, Benavente R, Garcia M (2010) Crystallization behavior of Poly(l-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym Compos 31:974–984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No. 51403027), Natural Science Foundation of Chongqing Municipal Science and Technology Commission (Project No. cstc2015jcyjBX0123), Scientific and Technological Research Program of Chongqing Municipal Education Commission (Project No. KJ1601101), and Innovation Team Project of Chongqing Municipal Education Commission (Project No. CXTDX201601037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hua Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, YH., Zhao, LS. & Tian, LL. Investigating the crystallization, melting behavior, and thermal stability of poly(l-lactic acid) using aromatic isoniazid derivative as nucleating agent. Polym. Bull. 74, 3751–3764 (2017). https://doi.org/10.1007/s00289-017-1923-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1923-4

Keywords

Navigation