Skip to main content
Log in

Peptoids and polypeptoids: biomimetic and bioinspired materials for biomedical applications

Polymer Bulletin Aims and scope Submit manuscript

Abstract

As material chemists and engineers aim to improve the properties of macromolecules for advanced biomedical applications, considerable attention has been paid to new classes of biomimetic polymers such as polypeptoids. Peptoid polymers can be synthesized from a wide variety of chemically diverse building blocks to create a broad family of functionally diverse materials. These materials have been shown to have a wide variety of biological activities and promising attributes. The ability to mimic nature’s self-organization has become important in the area of biomaterials science. In this short colloquy, we provide an overview of the chemistry of peptoid/peptoid polymers including several applications. The discovery of few remarkable peptoids/polypeptoids of biological interest outlined over the past few decades will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    Article  CAS  Google Scholar 

  2. Trabocchi A, Guarna A (2014) Chapter,1 peptidomimetics in organic and medicinal chemistry: the art of transforming peptides in drugs. John Wiley & Sons Ltd, Chichester, pp 1–17

    Book  Google Scholar 

  3. Jung JP, Gasiorowski JZ, Collier JH (2010) Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers (Pept Sci) 94:49–59

    Article  CAS  Google Scholar 

  4. Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428

    Article  CAS  Google Scholar 

  5. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  CAS  Google Scholar 

  6. Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK, Spellmeyer DC, Tan RY, Frankel AD, Santi DV, Cohen FE, Bartlett PA (1992) Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 89:9367–9371

    Article  CAS  Google Scholar 

  7. Zuckermann RN (2011) Peptoid origins. Biopolymers (Pept Sci) 96:545–555

    Article  CAS  Google Scholar 

  8. Kirshenbaum K, Barron AE, Goldsmith RA, Armand P, Bradley EK, Truong KTV, Dill KA, Cohen FE, Zuckermann RN (1998) Proc Natl Acad Sci USA 95:4303–4308

    Article  CAS  Google Scholar 

  9. Zuckermann RN, Kerr JM, Kent SBH, Moos WH, Simon RJ, Goff DA (1995) Synthesis of N-substituted oligomers. US Patent Number: US 5831005

  10. Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH (1994) Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers. Bioorg Med Chem Lett 4:2657–2662

    Article  CAS  Google Scholar 

  11. Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH (1995) Comparison of the proteolytic susceptibilities of homologous l-amino acid, d-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev Res 35:20–32

    Article  CAS  Google Scholar 

  12. Kruijtzer JAW, Hofmeyer LJF, Heerma W, Versluis C, Liskamp RMJ (1998) Solid-phase syntheses of peptoids using Fmoc-protected N-substituted glycines: the synthesis of (retro)peptoids of leu-enkephalin and substance P. Chem Eur J 4:1570–1580

    Article  CAS  Google Scholar 

  13. Olivier GK, Cho A, Sanii B, Connolly MD, Tran H, Zuckermann RN (2013) Antibody-mimetic peptoid nanosheets for molecular recognition. ACS Nano 7:9276–9286

    Article  CAS  Google Scholar 

  14. Statz AR, Park JP, Chongsiriwatana NP, Barron AE, Messersmith PB (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24:439–448

    Article  CAS  Google Scholar 

  15. Lau KHA (2014) Peptoids for biomaterials science. Biomater Sci 2:627–633

    Article  CAS  Google Scholar 

  16. Goodson B, Ehrhardt A, Ng S, Nuss J, Johnson K, Giedlin M, Yamamoto R, Moos WH, Krebber A, Ladner M, Giacona MB, Vitt C, Winter J (1999) Characterization of novel antimicrobial peptoids. Antimicrob Agents Chemother 43:1429–1434

    CAS  Google Scholar 

  17. Ng S, Goodson B, Ehrhardt A, Moos WH, Siani M, Winter J (1999) Combinatorial discovery process yields antimicrobial peptoids. Bioorg Med Chem 7:1781–1785

    Article  CAS  Google Scholar 

  18. Kirshenbaum K, Zuckermann RN, Dill KA (1999) Designing polymers that mimic biomolecules. Curr Opin Struct Biol 9:530–535

    Article  CAS  Google Scholar 

  19. Robertson EJ, Olivier GK, Qian M, Proulx C, Zuckermann RN, Richmond GL (2014) Assembly and molecular order of two-dimensional peptoid nanosheets through the oil–water interface. PNAS USA 111:13284–13289

    Article  CAS  Google Scholar 

  20. Creighton CJ, Zapf CW, Bu JH, Goodman M (1999) Solid-phase synthesis of pyridones and pyridopyrazines as peptidomimetic scaffolds. Org Lett 1:1407–1409

    Article  CAS  Google Scholar 

  21. Nakayama K, Kawato HC, Inagaki H, Ohta T (2001) Novel peptidomimetics of the antifungal cyclic peptide rhodopeptin: design of mimetics utilizing scaffolding methodology. Org Lett 3:3447–3450

    Article  CAS  Google Scholar 

  22. Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R (2016) Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem Rev 116(4):1753–1802

    Article  CAS  Google Scholar 

  23. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Peptide Protein Res 36:255–266

    Article  CAS  Google Scholar 

  24. Gorske BC, Jewell SA, Guerard EJ, Blackwell HE (2005) Expedient synthesis and design strategies for new peptoid construction. Org Lett 7:1521–1524

    Article  CAS  Google Scholar 

  25. Seo J, Michaelian N, Owens SC, Dashner ST, Wong AJ, Barron AE, Carrasco MR (2009) Chemoselective and microwave-assisted synthesis of glycopeptoids. Org Lett 11:5210–5213

    Article  CAS  Google Scholar 

  26. Olivos HJ, Alluri PG, Reddy MM, Salony D, Kodadek T (2002) Microwave-assisted solid-phase synthesis of peptoids. Org Lett 4:4057–4059

    Article  CAS  Google Scholar 

  27. Shin SBY, Yoo B, Todaro LJ, Kirshenbaum K (2007) Cyclic peptoids. J Am Chem Soc 129:3218–3225

    Article  CAS  Google Scholar 

  28. Rajasekhar K, Narayanaswamy N, Mishra P, Suresh SN, Manjithaya R, Govindaraju T (2014) Synthesis of hybrid cyclic peptoids and identification of autophagy enhancer. Chem Plus Chem 79:25–30

    CAS  Google Scholar 

  29. Hjelmgaard T, Faure S, Caumes C, Santis ED, Edwards AA, Taillefumier C (2009) Convenient solution-phase synthesis and conformational studies of novel linear and cyclic α,β-alternating peptoids. Org Lett 11:4100–4103

    Article  CAS  Google Scholar 

  30. Darensbourg DJ, Phelps AL, Gall LN, Jia L (2004) Mechanistic studies of the copolymerization reaction of aziridines and carbon monoxide to produce poly-β-peptoids. J Am Chem Soc 126:13808–13815

    Article  CAS  Google Scholar 

  31. Jia L, Sun HL, Shay JT, Allgeier AM, Hanton SD (2002) Living alternating copolymerization of N-alkylaziridines and carbon monoxide as a route for synthesis of poly-β-peptoids. J Am Chem Soc 124:7282–7283

    Article  CAS  Google Scholar 

  32. Luxenhofer R, Fetsch C, Grossmann A (2013) Polypeptoids: a perfect match for molecular definition and macromolecular engineering? J Polym Sci Part A Polym Chem 51:2731–2752

    Article  CAS  Google Scholar 

  33. Zhang DH, Lahasky SH, Guo L, Lee CU, Lavan M (2012) Polypeptoid materials: current status and future perspectives. Macromolecules 45:5833–5841

    Article  CAS  Google Scholar 

  34. Li S, Bowerman D, Marthandan N, Klyza S, Luebke KJ, Garner HR, Kodadek T (2004) Photolithographic synthesis of peptoids. J Am Chem Soc 126:4088–4089

    Article  CAS  Google Scholar 

  35. Kawakami T, Murakami H, Suga H (2008) ribosomal synthesis of polypeptoids and peptoid–peptide hybrids. J Am Chem Soc 130:16861–16863

    Article  CAS  Google Scholar 

  36. Tedesco C, Erra L, Izzo I, Riccardis FD (2014) Solid state assembly of cyclic α-peptoids. Cryst Eng Comm 16:3667–3687

    Article  CAS  Google Scholar 

  37. Sun Y, Du J, Wang Y, Wu S (2010) Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids. Chem Pap 64:515–522

    Article  CAS  Google Scholar 

  38. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501

    Article  CAS  Google Scholar 

  39. Hamper BC, Kolodziej SA, Scates AM, Smith RG, Cortez E (1998) Solid phase synthesis of β-peptoids: N-substituted β-aminopropionic acid oligomers. J Org Chem 63:708–718

    Article  CAS  Google Scholar 

  40. Roy O, Faure S, Thery V, Didierjean C, Taillefumier C (2008) Cyclic β-peptoids. Org Lett 10:921–924

    Article  CAS  Google Scholar 

  41. Culf AS, Čuperlović-Culf M, Léger DA, Decken A (2014) Small head-to-tail macrocyclic α-peptoids. Org Lett 16:2780–2783

    Article  CAS  Google Scholar 

  42. Khan SN, Kim A, Grubbs RH, Kwon Y-K (2011) Ring-closing metathesis approaches for the solid-phase synthesis of cyclic peptoids. Org Lett 13:1582–1585

    Article  CAS  Google Scholar 

  43. Huang ML, Shin SBY, Benson MA, Torres VJ, Kirshenbaum K (2012) A comparison of linear and cyclic peptoid oligomers as potent antimicrobial agents. Chem Med Chem 7:114–122

    Article  CAS  Google Scholar 

  44. Martins C, Correia VG, Aguiar-Ricardo A, Cunha Â, Moutinho MGM (2015) Antimicrobial activity of new green-functionalized oxazoline-based oligomers against clinical isolates. SpringerPlus 4:382

    Article  Google Scholar 

  45. Xue Y, Xiao H, Zhang Y (2015) antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 16(2):3626–3655

    Article  CAS  Google Scholar 

  46. Cho S, Choi J, Kim A, Lee Y, Kwon Y-U (2010) Efficient solid-phase synthesis of a series of cyclic and linear peptoid-dexamethasone conjugates for the cell permeability studies. J Comb Chem 12:321–326

    Article  CAS  Google Scholar 

  47. Izzo I, Ianniello G, Cola CD, Nardone B, Erra L, Vaughan G, Tedesco C, Riccardis FD (2013) Structural effects of proline substitution and metal binding on hexameric cyclic peptoids. Org Lett 15:598–601

    Article  CAS  Google Scholar 

  48. Park S, Kwon Y-U (2015) Facile solid-phase parallel synthesis of linear and cyclic peptoids for comparative studies of biological activity. ACS Comb Sci 17:196–201

    Article  CAS  Google Scholar 

  49. Lee B-C, Chu TK, Dill KA, Zuckermann RN (2008) Biomimetic nanostructures: creating a high-affinity zinc-binding site in a folded nonbiological polymer. J Am Chem Soc 130:8847–8855

    Article  CAS  Google Scholar 

  50. Burkoth TS, Beausoleil E, Kaur S, Tang D, Cohen FE, Zuckermann RN (2002) Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly. Chem Biol 9:647–654

    Article  CAS  Google Scholar 

  51. Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  52. Heine N, Ast T, Schneider-Mergener J, Reineke U, Germeroth L, Wenschuh H (2003) Synthesis and screening of peptoid arrays on cellulose membranes. Tetrahedron 59:9919–9930

    Article  CAS  Google Scholar 

  53. Maayan G, Yoo B, Kirshenbaum K (2008) Heterocyclic amines for the construction of peptoid oligomers bearing multi-dentate ligands. Tetrahedron Lett 49:335–338

    Article  CAS  Google Scholar 

  54. Maayan G, Ward MD, Kirshenbaum K (2009) Metallopeptoids. Chem Commun (1):56–58. doi:10.1039/B810875G

  55. Baskin M, Maayan G (2015) Water-soluble chiral metallopeptoids. Biopolymers 104:577–584

    Article  CAS  Google Scholar 

  56. Sanborn TJ, Wu CW, Zuckermann RN, Barron AE (2002) Extreme stability of helices formed by water-soluble poly-N-substituted glycines (polypeptoids) with α-chiral side chains. Biopolymers 63:12–20

    Article  CAS  Google Scholar 

  57. Mas-Moruno C, Cruz LJ, Mora P, Francesch A, Messeguer A, Pérez-Payá E, Albericio F (2007) Smallest peptoids with antiproliferative activity on human neoplastic cells. J Med Chem 50:2443–2449

    Article  CAS  Google Scholar 

  58. Robinson DB, Buffleben GM, Langham ME, Zuckermann RN (2011) Stabilization of nanoparticles under biological assembly conditions using peptoids. Biopolymers (Pept Sci) 96:669–678

    Article  CAS  Google Scholar 

  59. Fuller AA, Holmes CA, Seidl FJ (2013) A fluorescent peptoid pH-sensor. Biopolymers (Pept Sci) 100:380–386

    Article  CAS  Google Scholar 

  60. Chen X, Fei P, Cavicchi KA, Yang W, Ayres N (2014) The poor solubility of ureidopyrimidinone can be used to form gels of low molecular weight N-alkyl urea oligomers in organic solvents. Colloid Polym Sci 292:477–484

    Article  CAS  Google Scholar 

  61. Mangunuru HPR, Yang H, Wang GJ (2013) Synthesis of peptoid based small molecular gelators by a multiple component reaction. Chem Commun 49:4489–4491

    Article  CAS  Google Scholar 

  62. Wu ZD, Tan M, Chen XM, Yang ZM, Wang L (2012) Molecular hydrogelators of peptoid–peptide conjugates with superior stability against enzyme digestion. Nanoscale 4:3644–3646

    Article  CAS  Google Scholar 

  63. Domurado D, Vert M (2007) Bioresorbable polyelectrolyte amphiphiles as nanosized carriers for lipophilic drug solubilization and delivery. J Biomater Sci Polym Ed 18:287–301

    Article  CAS  Google Scholar 

  64. Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Byoung-Chul L, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460

    Article  CAS  Google Scholar 

  65. Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2:413–418

    Article  CAS  Google Scholar 

  66. Bouville F, Maire E, Meille S, Van de Moortèle B, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13:508–514

    Article  CAS  Google Scholar 

  67. Kou L, Gao C (2013) Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale 5:4370–4378

    Article  CAS  Google Scholar 

  68. Tanaka Y, Nemoto T, Naka K, Chujo Y (2000) Preparation of CaCO3/polymer composite films via interaction of anionic starburst dendrimer with poly(ethylenimine). Polym Bull 45:447–450

    Article  CAS  Google Scholar 

  69. Achal V, Mukherjee A, Kumari D, Zhang Q (2015) Biomineralization for sustainable construction—a review of processes and applications. Earth Sci Rev 148:1–17

    Article  CAS  Google Scholar 

  70. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314

    Article  Google Scholar 

  71. Jun JMV, Altoe MVP, Aloni S, Zuckermann RN (2015) Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization. Chem Commun 51:10218–10221

    Article  CAS  Google Scholar 

  72. Liu X, Ma Y, Zhou Y, Pei C, Yin G (2013) A promising hybrid scaffold material: bacterial cellulose in-situ assembling biomimetic lamellar CaCO3. Mater Lett 102–103:91–93

    Article  Google Scholar 

  73. Wu Y, Ji-Cheng X, Liu J, You-Xing J (2001) Synthesis of N-Boc and N-Fmoc dipeptoids with nucleobase residues as peptoid nucleic acid monomers. Tetrahedron 57:3373–3381

    Article  CAS  Google Scholar 

  74. Secker C, Robinson JW, Schlaad H (2015) Alkyne-X modification of polypeptoids. Eur Polym J 62:394–399

    Article  CAS  Google Scholar 

  75. Caumes C, Roy O, Faure S, Taillefumier C (2012) The click triazolium peptoid side chain: a strong cis-amide inducer enabling chemical diversity. J Am Chem Soc 134:9553–9556

    Article  CAS  Google Scholar 

  76. Okamoto Y, Nakano T, Habaue S, Shiohara K, Maeda K (1997) Synthesis and chiral recognition of helical polymers. J Macromol Sci Part A A34:1771–1783

    Article  CAS  Google Scholar 

  77. Barron AE, Zuckermann RN (1999) Bioinspired polymeric materials: in-between proteins and plastics. Curr Opin Chem Biol 3:681–687

    Article  CAS  Google Scholar 

  78. Norgren AS, Zhang S, Arvidsson PI (2006) Synthesis and circular dichroism spectroscopic investigations of oligomeric β-peptoids with α-chiral side chains. Org Lett 8:4533–4536

    Article  CAS  Google Scholar 

  79. Kesavan V, Tamilarasu N, Cao H, Rana TM (2002) A new class of RNA-binding oligomers: peptoid amide and ester analogues. Bioconjugate Chem 13:1171–1175

    Article  CAS  Google Scholar 

  80. Chun-Long C, Qi J, Zuckermann RN, DeYoreo JJ (2011) Engineered biomimetic polymers as tunable agents for controlling CaCO3 mineralization. J Am Chem Soc 133:5214–5217

    Article  Google Scholar 

  81. Shin SBY, Kirshenbaum K (2007) Conformational rearrangements by water-soluble peptoid foldamers. Org Lett 9:5003–5006

    Article  CAS  Google Scholar 

  82. Wu CW, Kirshenbaum K, Sanborn TJ, Patch JA, Huang K, Dill KA, Zuckermann RN, Barron AE (2003) Structural and spectroscopic studies of peptoid oligomers with α-chiral aliphatic side chains. J Am Chem Soc 125:13525–13530

    Article  CAS  Google Scholar 

  83. Ovadia O, Linde Y, Haskell-Luevano C, Dirain ML, Sheynis T, Jelinek R, Gilon C, Hoffman A (2010) The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: the melanocortin agonist paradigm. Bioorg Med Chem 18:580–589

    Article  CAS  Google Scholar 

  84. Burkoth TS, Fafarman AT, Charych DH, Connolly MD, Zuckermann RN (2003) Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solid-phase submonomer synthesis. J Am Chem Soc 125:8841–8845

    Article  CAS  Google Scholar 

  85. Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6:872–877

    Article  CAS  Google Scholar 

  86. Zuckermann RN, Kodadek T (2009) Peptoids as potential therapeutics. Curr Opin Mol Ther 11:299–307

    CAS  Google Scholar 

  87. Vollrath SBL, Hu C, Bräse S, Kirshenbaum K (2013) Peptoid nanotubes: an oligomer macrocycle that reversibly sequesters water via single-crystal-to-single-crystal transformations. Chem Commun 49:2317–2319

    Article  CAS  Google Scholar 

  88. Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011

    Article  CAS  Google Scholar 

  89. Lau KHA, Sileika TS, Park SH, Sousa AML, Burch P, Szleifer I, Messersmith PB (2015) Molecular design of antifouling polymer brushes using sequence-specific peptoids. Adv Mater Interfaces 2:1400225

    Article  Google Scholar 

  90. Galetti MD, Cirigliano AM, Cabrera GM, Ramírez JA (2012) Multicomponent synthesis of acylated short peptoids with antifungal activity against plant pathogens. Mol Divers 16:113–119

    Article  CAS  Google Scholar 

  91. Ghasemi E, Shahvelayati AS, Yavari I (2016) Ugi reaction of thiouridocarboxylic acids: a synthesis of thiourea–peptoids. Phosphorus Sulfur Silicon Relat Elem 191:746–750

    Article  CAS  Google Scholar 

  92. Silva EHB, Emery FS, Ponte GD, Donate PM (2015) Synthesis of some functionalized peptomers via Ugi four-component reaction. Synth Commun 45:1761–1767

    Article  CAS  Google Scholar 

  93. Brauer MCN, Filho RAWN, Westermann B, Heinke R, Wessjohann LA (2015) Synthesis of antibacterial 1,3-diyne-linked peptoids from an Ugi-4CR/Glaser coupling approach. Beilstein J Org Chem 11:25–30

    Article  Google Scholar 

  94. Sun J, Zuckermann RN (2013) Peptoid polymers: a highly designable bioinspired material. ACS Nano 6:4715–4732

    Article  Google Scholar 

Download references

Acknowledgements

This work was done under the Czech-American Scientific Co-Operation. Work at Tomas Bata University in Zlin was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the framework project entitled “Synthesis of polypeptoid nanosheets for biomineralization” (Project No. LH 14050), falling under the program for international cooperation in research and development LH-KONTAKT II, and Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabanita Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, S.D., Saha, N., Zandraa, O. et al. Peptoids and polypeptoids: biomimetic and bioinspired materials for biomedical applications. Polym. Bull. 74, 3455–3466 (2017). https://doi.org/10.1007/s00289-016-1902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1902-1

Keywords

Navigation