Abstract
Biodegradable poly(butylene adipate-co-terephthalate) (PBAT) films incorporated with different levels of the antimicrobial peptide nisin were developed using the electrospinning technique. The characterization included thermal, structural, morphological, mechanical and antimicrobial properties. Thermal analysis indicated good thermal stability of PBAT. Nisin incorporation seems to increase nanofiber stability. The PBAT/nisin fibers presented no significant differences in the melting temperature (124–125.4 °C) and the glass transition temperature. PBAT showed characteristic diffraction peaks of the crystal structure. PBAT fibers were uniformly distributed and nisin was well dispersed throughout the fiber. The samples showed similar mechanical properties, and the addition of nisin caused no significant changes in the values of tensile strength, although Young’s modulus tended to decrease with higher nisin levels. Antimicrobial fibers inhibited the Gram-positive bacterium Listeria monocytogenes. These results provided insights into the interaction of nisin and PBAT in nanofibers produced by the electrospinning technique and their application in the food packaging industry.
This is a preview of subscription content, access via your institution.









References
Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Technol 63:2223–2253. doi:10.1016/S0266-3538(03)00178-7
Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221. doi:10.1039/b809074m
Berber E, Horzum N, Hazer B, Demir MM (2016) Solution electrospinning of polypropylene-based fibers and their application in catalysis. Fiber Polym 17:760–768. doi:10.1007/s12221-016-6183-7
Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735. doi:10.1039/c2cs35083a
Tao D, Higaki Y, Ma W, Wu H, Shinohara T, Yano T, Takahara A (2015) Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers. Polymer 60:284–291. doi:10.1016/j.polymer.2015.01.048
Torres-Giner S, Gimenez E, Lagaron JM (2008) Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids 22:601–614. doi:10.1016/j.foodhyd.2007.02.005
Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51:227–240. doi:10.1016/j.foodhyd.2015.05.024
Prasanna J, Monisha T, Ranjithabala V, Gupta R, Vijayakumar E, Sangeetha D (2014) Effect of process parameters on poly (butylene adipate coterephthalate) nanofibers development by electrospinning technique. Adv Mat Res 894:360–363. doi:10.4028/www.scientific.net/AMR.894.36
Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Progr Polym Sci 38:963–991. doi:10.1016/j.progpolymsci.2013.02.001
Shin HU, Li Y, Paynter A, Nartetamrongsutt K, Chase GG (2015) Vertical rod method for electrospinning polymer fibers. Polymer 65:26–33. doi:10.1016/j.polymer.2015.03.052
Zheng J, Zhang H, Zhao Z, Han CC (2012) Construction of hierarchical structures by electrospinning or electrospraying. Polymer 53:546–554. doi:10.1016/j.polymer.2011.12.018
Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29. doi:10.1016/j.polymer.2015.07.001
Wei Q (2012) Functional nanofibers and their applications. Woodhead Publishing, Oxford
Brandelli A, Taylor TM (2015) Nanostructured and nanoencapsulated natural antimicrobials for use in food products. In: Taylor TM (ed) Handbook of natural antimicrobials for food safety and quality. Elsevier, Oxford, pp 229–257
Liu H, Pei H, Han Z, Feng G, Li D (2015) The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-polylysine and nisin against Bacillus subtilis. Food Control 47:444–450. doi:10.1016/j.foodcont.2014.07.050
Şimşek Ö (2014) Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain. J Ind Microbiol Biotechnol 41:535–543. doi:10.1007/s10295-013-1388-x
Khaksar R, Hosseini SM, Hosseini H, Shojaee-Aliabadi S, Mohammadifar MA, Mortazavian AM, Khosravi-Darani K, Haji Seyed Javadi N, Komeily R (2014) Nisin-loaded alginate-high methoxy pectin microparticles: preparation and physicochemical characterisation. Int J Food Sci Technol 49:2076–2082. doi:10.1111/ijfs.12516
Guo T, Hu S, Kong J (2013) Functional analysis and randomization of the nisin-inducible promoter for tuning gene expression in Lactococcus lactis. Curr Microbiol 66:548–554. doi:10.1007/s00284-013-0312-y
Arauz LJ, Jozala AF, Mazzola PG, Vessoni Penna TC (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154. doi:10.1016/j.tifs.2009.01.056
Meira S, Zehetmeyer G, Jardim A, Scheibel J, de Oliveira R, Brandelli A (2014) Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol 7:3349–3357. doi:10.1007/s11947-014-1335-5
Bastarrachea L, Dhawan S, Sablani SS, Mah J-H, Kang D-H, Zhang J, Tang J (2010) Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J Food Sci 75:E215–E224. doi:10.1111/j.1750-3841.2010.01591.x
Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12
Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C 32:637–647. doi:10.1016/j.msec.2012.01.021
Şanal T, Koçak İ, Hazer B (2016) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull. doi:10.1007/s00289-016-1757-5
Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. doi:10.1007/s00289-015-1558-2
Toraman T, Hazer B (2014) Synthesis and characterization of the novel thermoresponsive conjugates based on poly(3-hydroxy alkanoates). J Polym Environ 22:159–166. doi:10.1007/s10924-014-0646-y
Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450. doi:10.1016/j.polymer.2005.10.065
Shirai MA, Olivato JB, Garcia PS, Müller CMO, Grossmann MVE, Yamashita F (2013) Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition. Mater Sci Eng C 33:4112–4117. doi:10.1016/j.msec.2013.05.054
Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926. doi:10.1016/j.polymertesting.2013.05.001
Al-Itry R, Lamnawar K, Maazouz A (2014) Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta 53:501–517. doi:10.1007/s00397-014-0774-2
Zehetmeyer G, Meira SMM, Scheibel JM, de Oliveira RVB, Brandelli A, Soares RMD (2016) Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. J Appl Polym Sci 133:1–10. doi:10.1002/app.43212
Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. doi:10.1016/j.polymdegradstab.2012.06.028
Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J Polym Environ 14:393–401. doi:10.1007/s10924-006-0033-4
Holler MG, Campo LF, Brandelli A, Stefani V (2002) Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins. J Photochem Photobiol A Chem 149:217–225. doi:10.1016/S1010-6030(02)00008-4
ANVISA (2010) Agência Nacional de Vigilância Sanitária. Resolução-RDC n° 51, de 26 de Novembro de 2010. Regulamento Técnico MERCOSUL sobre Migração em Materiais, Embalagens e Equipamentos Plásticos Destinados a Entrar em Contato com o Alimento. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 30 nov. 2010. RDC n° 51, Regulamento técnico Mercosul sobre migração em materiais, embalagens e equipamentos plásticos destinados a entrar em contato com o alimento. Diário Oficial da União 75:244
Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70. doi:10.1046/j.1365-2672.2002.01490.x
Muthuraj R, Misra M, Mohanty A (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J Polym Environ 22:336–349. doi:10.1007/s10924-013-0636-5
Brandelero RPH, Grossmann MV, Yamashita F (2012) Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80. Carbohydr Polym 90:1452–1460. doi:10.1016/j.carbpol.2012.07.015
Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochem Biophys Sin 39:549–559. doi:10.1111/j.1745-7270.2007.00320.x
Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Macromol Mater Eng 300:299–311. doi:10.1002/mame.201400241
Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134. doi:10.1007/s00289-009-0072-9
Ibrahim N, Rahim N, Wan Yunus W, Sharif J (2011) A study of poly vinyl chloride/poly(butylene adipate-co-terephthalate) blends. J Polym Res 18:891–896. doi:10.1007/s10965-010-9486-1
Marques MV, Lunz J, Aguiar V, Grafova I, Kemell M, Visentin F, Sartori A, Grafov A (2015) Thermal and mechanical properties of sustainable composites reinforced with natural fibers. J Polym Environ 23:251–260. doi:10.1007/s10924-014-0687-2
Feng S, Wu D, Liu H, Chen C, Liu J, Yao Z, Xu J, Zhang M (2014) Crystallization and creep of the graphite nanosheets based poly(butylene adipate-co-terephthalate) biocomposites. Therm Acta 587:72–80. doi:10.1016/j.tca.2014.04.020
Yang F, Qiu Z (2011) Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. J Appl Polym Sci 119:1426–1434. doi:10.1002/app.32619
Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J Nanomaterials 2010:8. doi:10.1155/2010/287082
BASF Company. https://www.basf.com/br/. Accessed Dec 2015
Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935. doi:10.1002/app.30011
Ramakrishna S, Fujihara K (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co, Danvers, pp 22–152
Fukuya MN, Senoo K, Kotera M, Yoshimoto M, Sakata O (2014) Controlling of crystallite orientation for poly(ethylene oxide) thin films with cellulose single nano-fibers. Polymer 55:4401–4404. doi:10.1016/j.polymer.2014.06.004
Guerrini LM, Branciforti MC, Bretas RES (2006) Electrospinning of aqueous solution of poly(vinyl alcohol). Polímeros 16:286–293
Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272. doi:10.1016/S0032-3861(00)00250-0
Jin W-J, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Metals 157:454–459. doi:10.1016/j.synthmet.2007.05.011
Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, Gomez Ribelles JL, Lanceros Mendez S (2012) Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym 87:1295–1301. doi:10.1016/j.carbpol.2011.09.017
Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913–6922. doi:10.1016/j.polymer.2007.09.017
Ye P, Xu Z-K, Wu J, Innocent C, Seta P (2006) Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials 27:4169–4176. doi:10.1016/j.biomaterials.2006.03.027
Costa RGF, Oliveira JE, Paula GF, Picciani PHS, Medeiros ES, Ribeiro C, Mattoso LHC (2012) Electrospinning of polymers in solution. Part I: theoretical foundation. Polímeros 22:170–177
Nguyen T-H, Lee K-H, Lee B-T (2010) Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning. Mater Sci Eng C 30:944–950. doi:10.1016/j.msec.2010.04.012
Wang X, Yue T, T-c Lee (2015) Development of pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control 54:150–157. doi:10.1016/j.foodcont.2015.02.001
Tan L, Gan L, Hu J, Zhu Y, Han J (2015) Functional shape memory composite nanofibers with graphene oxide filler. Comp Part A Appl Sci Manuf 76:115–123. doi:10.1016/j.compositesa.2015.04.015
Li G, Shankar S, Rhim J-W, Oh B-Y (2015) Effects of preparation method on properties of poly(butylene adipate-co-terephthalate) films. Food Sci Biotechnol 24:1679–1685. doi:10.1007/s10068-015-0218-5
Ke P, Jiao X-N, Ge X-H, Xiao W-M, Yu B (2014) From macro to micro: structural biomimetic materials by electrospinning. RSC Adv 4:39704–39724. doi:10.1039/c4ra05098c
Jing X, Mi H-Y, Cordie TM, Salick MR, Peng X-F, Turng L-S (2014) Fabrication of shish–kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: effect of solvents and matrigel functionalization. Polymer 55:5396–5406. doi:10.1016/j.polymer.2014.08.061
Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO (2016) Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater Sci Eng C 59:782–791. doi:10.1016/j.msec.2015.10.075
Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(2′-hydroxyphenyl)benzazole derivatives: effects of the solvent and the amino group position. J Lumin 126:728–734. doi:10.1016/j.jlumin.2006.11.007
Rodembusch FS, Leusin FP, Medina LFC, Brandelli A, Stefani V (2005) Synthesis and spectroscopic characterization of new ESIPT fluorescent protein probes. Photochem Photobiol Sci 4:254–259. doi:10.1039/B409233C
Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425. doi:10.1016/j.polymer.2008.02.002
Zhu Z, Zhang L, Smith S, Fong H, Sun Y, Gosztola D (2009) Fluorescence studies of electrospun MEH-PPV/PEO nanofibers. Synth Metals 159:1454–1459. doi:10.1016/j.synthmet.2009.03.025
Tong Z, Ni L, Ling J (2014) Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria. Peptides 60:32–40. doi:10.1016/j.peptides.2014.07.020
Su C, Li Y, Dai Y, Gao F, Tang K, Cao H (2016) Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning. Mater Lett 170:67–71. doi:10.1016/j.matlet.2016.01.133
Cassu SN, Felisberti MI (2005) Dynamic mechanical behavior and relaxations in polymers and polymeric blends. Quim Nova 28:255–263
Touati N, Kaci M, Bruzaud S, Grohens Y (2011) The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15A nanocomposites. Polym Degrad Stab 96:1064–1073. doi:10.1016/j.polymdegradstab.2011.03.015
Bittmann B, Bouza R, Barral L, González-Rodríguez MV, Abad M-J (2012) Nanoclay-reinforced poly(butylene adipate-co-terephthalate) biocomposites for packaging applications. Polym Comp 33:2022–2028. doi:10.1002/pc.22344
Liu B, Bhaladhare S, Zhan P, Jiang L, Zhang J, Liu L, Hotchkiss AT (2011) Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-co-terephthalate) blends. Ind Eng Chem Res 50:13859–13865. doi:10.1021/ie2017948
Li W, Coffin DR, Jin TZ, Latona N, Liu C-K, Liu B, Zhang J, Liu L (2012) Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging. J Appl Polym Sci 126:E362–E373. doi:10.1002/app.36885
Chen F, Zhang J (2010) In-situ poly(butylene adipate-co-terephthalate)/soy protein concentrate composites: effects of compatibilization and composition on properties. Polymer 51:1812–1819. doi:10.1016/j.polymer.2010.02.035
Stempfle F, Ritter BS, Mülhaupt R, Mecking S (2014) Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chem 16:2008–2014. doi:10.1039/C4GC00114A
Katančić Z, Travaš-Sejdić J, Hrnjak-Murgić Z (2011) Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polym Degrad Stab 96:2104–2111. doi:10.1016/j.polymdegradstab.2011.09.020
Zhu L, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891–1899. doi:10.1002/app.20658
Jung DS, Bodyfelt FW, Daeschel MA (1992) Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J Dairy Sci 75:387–393. doi:10.3168/jds.S0022-0302(92)77773-X
Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469. doi:10.1111/j.1472-765X.2005.01796.x
Hanušová K, Šťastná M, Votavová L, Klaudisová K, Dobiáš J, Voldřich M, Marek M (2010) Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: nisin and natamycin migration, efficiency in cheese packaging. J Food Eng 99:491–496. doi:10.1016/j.jfoodeng.2010.01.034
Dheraprasart C, Rengpipat S, Supaphol P, Tattiyakul J (2009) Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat. J Food Protect 72:2293–2300
Acknowledgements
The authors are grateful to the BASF Corporation for supplying the polymer, the Center of Electron Microscopy (CME-UFRGS, Porto Alegre, Brazil) for support on electron microscopy images and Juliana Ferreira Boelter for technical support on microbiological analyses. This work received financial support of CAPES and CNPq (Brasília, Brazil).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
289_2016_1896_MOESM2_ESM.tif
Supplementary Fig. S2. (a) TGA curves of pure PBAT and PBAT/nisin nanofibers and (b) DTG curves of pure PBAT and PBAT/nisin nanofibers (TIFF 31 kb)
Rights and permissions
About this article
Cite this article
Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M. et al. Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polym. Bull. 74, 3243–3268 (2017). https://doi.org/10.1007/s00289-016-1896-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00289-016-1896-8