Skip to main content

Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers

Abstract

Biodegradable poly(butylene adipate-co-terephthalate) (PBAT) films incorporated with different levels of the antimicrobial peptide nisin were developed using the electrospinning technique. The characterization included thermal, structural, morphological, mechanical and antimicrobial properties. Thermal analysis indicated good thermal stability of PBAT. Nisin incorporation seems to increase nanofiber stability. The PBAT/nisin fibers presented no significant differences in the melting temperature (124–125.4 °C) and the glass transition temperature. PBAT showed characteristic diffraction peaks of the crystal structure. PBAT fibers were uniformly distributed and nisin was well dispersed throughout the fiber. The samples showed similar mechanical properties, and the addition of nisin caused no significant changes in the values of tensile strength, although Young’s modulus tended to decrease with higher nisin levels. Antimicrobial fibers inhibited the Gram-positive bacterium Listeria monocytogenes. These results provided insights into the interaction of nisin and PBAT in nanofibers produced by the electrospinning technique and their application in the food packaging industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Technol 63:2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  2. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221. doi:10.1039/b809074m

    Article  CAS  Google Scholar 

  3. Berber E, Horzum N, Hazer B, Demir MM (2016) Solution electrospinning of polypropylene-based fibers and their application in catalysis. Fiber Polym 17:760–768. doi:10.1007/s12221-016-6183-7

    Article  CAS  Google Scholar 

  4. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735. doi:10.1039/c2cs35083a

    Article  CAS  Google Scholar 

  5. Tao D, Higaki Y, Ma W, Wu H, Shinohara T, Yano T, Takahara A (2015) Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers. Polymer 60:284–291. doi:10.1016/j.polymer.2015.01.048

    Article  CAS  Google Scholar 

  6. Torres-Giner S, Gimenez E, Lagaron JM (2008) Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids 22:601–614. doi:10.1016/j.foodhyd.2007.02.005

    Article  CAS  Google Scholar 

  7. Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51:227–240. doi:10.1016/j.foodhyd.2015.05.024

    Article  CAS  Google Scholar 

  8. Prasanna J, Monisha T, Ranjithabala V, Gupta R, Vijayakumar E, Sangeetha D (2014) Effect of process parameters on poly (butylene adipate coterephthalate) nanofibers development by electrospinning technique. Adv Mat Res 894:360–363. doi:10.4028/www.scientific.net/AMR.894.36

  9. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Progr Polym Sci 38:963–991. doi:10.1016/j.progpolymsci.2013.02.001

    Article  CAS  Google Scholar 

  10. Shin HU, Li Y, Paynter A, Nartetamrongsutt K, Chase GG (2015) Vertical rod method for electrospinning polymer fibers. Polymer 65:26–33. doi:10.1016/j.polymer.2015.03.052

    Article  CAS  Google Scholar 

  11. Zheng J, Zhang H, Zhao Z, Han CC (2012) Construction of hierarchical structures by electrospinning or electrospraying. Polymer 53:546–554. doi:10.1016/j.polymer.2011.12.018

    Article  CAS  Google Scholar 

  12. Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29. doi:10.1016/j.polymer.2015.07.001

    Article  CAS  Google Scholar 

  13. Wei Q (2012) Functional nanofibers and their applications. Woodhead Publishing, Oxford

    Google Scholar 

  14. Brandelli A, Taylor TM (2015) Nanostructured and nanoencapsulated natural antimicrobials for use in food products. In: Taylor TM (ed) Handbook of natural antimicrobials for food safety and quality. Elsevier, Oxford, pp 229–257

    Chapter  Google Scholar 

  15. Liu H, Pei H, Han Z, Feng G, Li D (2015) The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-polylysine and nisin against Bacillus subtilis. Food Control 47:444–450. doi:10.1016/j.foodcont.2014.07.050

    Article  CAS  Google Scholar 

  16. Şimşek Ö (2014) Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain. J Ind Microbiol Biotechnol 41:535–543. doi:10.1007/s10295-013-1388-x

    Article  Google Scholar 

  17. Khaksar R, Hosseini SM, Hosseini H, Shojaee-Aliabadi S, Mohammadifar MA, Mortazavian AM, Khosravi-Darani K, Haji Seyed Javadi N, Komeily R (2014) Nisin-loaded alginate-high methoxy pectin microparticles: preparation and physicochemical characterisation. Int J Food Sci Technol 49:2076–2082. doi:10.1111/ijfs.12516

    Article  CAS  Google Scholar 

  18. Guo T, Hu S, Kong J (2013) Functional analysis and randomization of the nisin-inducible promoter for tuning gene expression in Lactococcus lactis. Curr Microbiol 66:548–554. doi:10.1007/s00284-013-0312-y

    Article  CAS  Google Scholar 

  19. Arauz LJ, Jozala AF, Mazzola PG, Vessoni Penna TC (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154. doi:10.1016/j.tifs.2009.01.056

    Article  Google Scholar 

  20. Meira S, Zehetmeyer G, Jardim A, Scheibel J, de Oliveira R, Brandelli A (2014) Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol 7:3349–3357. doi:10.1007/s11947-014-1335-5

    Article  CAS  Google Scholar 

  21. Bastarrachea L, Dhawan S, Sablani SS, Mah J-H, Kang D-H, Zhang J, Tang J (2010) Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J Food Sci 75:E215–E224. doi:10.1111/j.1750-3841.2010.01591.x

    Article  CAS  Google Scholar 

  22. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  Google Scholar 

  23. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C 32:637–647. doi:10.1016/j.msec.2012.01.021

    Article  CAS  Google Scholar 

  24. Şanal T, Koçak İ, Hazer B (2016) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull. doi:10.1007/s00289-016-1757-5

    Google Scholar 

  25. Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. doi:10.1007/s00289-015-1558-2

    Article  Google Scholar 

  26. Toraman T, Hazer B (2014) Synthesis and characterization of the novel thermoresponsive conjugates based on poly(3-hydroxy alkanoates). J Polym Environ 22:159–166. doi:10.1007/s10924-014-0646-y

    Article  CAS  Google Scholar 

  27. Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450. doi:10.1016/j.polymer.2005.10.065

    Article  CAS  Google Scholar 

  28. Shirai MA, Olivato JB, Garcia PS, Müller CMO, Grossmann MVE, Yamashita F (2013) Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition. Mater Sci Eng C 33:4112–4117. doi:10.1016/j.msec.2013.05.054

    Article  CAS  Google Scholar 

  29. Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926. doi:10.1016/j.polymertesting.2013.05.001

    Article  CAS  Google Scholar 

  30. Al-Itry R, Lamnawar K, Maazouz A (2014) Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta 53:501–517. doi:10.1007/s00397-014-0774-2

    Article  CAS  Google Scholar 

  31. Zehetmeyer G, Meira SMM, Scheibel JM, de Oliveira RVB, Brandelli A, Soares RMD (2016) Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. J Appl Polym Sci 133:1–10. doi:10.1002/app.43212

    Article  Google Scholar 

  32. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. doi:10.1016/j.polymdegradstab.2012.06.028

    Article  CAS  Google Scholar 

  33. Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J Polym Environ 14:393–401. doi:10.1007/s10924-006-0033-4

    Article  CAS  Google Scholar 

  34. Holler MG, Campo LF, Brandelli A, Stefani V (2002) Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins. J Photochem Photobiol A Chem 149:217–225. doi:10.1016/S1010-6030(02)00008-4

    Article  CAS  Google Scholar 

  35. ANVISA (2010) Agência Nacional de Vigilância Sanitária. Resolução-RDC n° 51, de 26 de Novembro de 2010. Regulamento Técnico MERCOSUL sobre Migração em Materiais, Embalagens e Equipamentos Plásticos Destinados a Entrar em Contato com o Alimento. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 30 nov. 2010. RDC n° 51, Regulamento técnico Mercosul sobre migração em materiais, embalagens e equipamentos plásticos destinados a entrar em contato com o alimento. Diário Oficial da União 75:244

  36. Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70. doi:10.1046/j.1365-2672.2002.01490.x

    Article  CAS  Google Scholar 

  37. Muthuraj R, Misra M, Mohanty A (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J Polym Environ 22:336–349. doi:10.1007/s10924-013-0636-5

    Article  CAS  Google Scholar 

  38. Brandelero RPH, Grossmann MV, Yamashita F (2012) Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80. Carbohydr Polym 90:1452–1460. doi:10.1016/j.carbpol.2012.07.015

    Article  CAS  Google Scholar 

  39. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochem Biophys Sin 39:549–559. doi:10.1111/j.1745-7270.2007.00320.x

    Article  CAS  Google Scholar 

  40. Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Macromol Mater Eng 300:299–311. doi:10.1002/mame.201400241

    Article  CAS  Google Scholar 

  41. Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134. doi:10.1007/s00289-009-0072-9

    Article  CAS  Google Scholar 

  42. Ibrahim N, Rahim N, Wan Yunus W, Sharif J (2011) A study of poly vinyl chloride/poly(butylene adipate-co-terephthalate) blends. J Polym Res 18:891–896. doi:10.1007/s10965-010-9486-1

    Article  CAS  Google Scholar 

  43. Marques MV, Lunz J, Aguiar V, Grafova I, Kemell M, Visentin F, Sartori A, Grafov A (2015) Thermal and mechanical properties of sustainable composites reinforced with natural fibers. J Polym Environ 23:251–260. doi:10.1007/s10924-014-0687-2

    Article  CAS  Google Scholar 

  44. Feng S, Wu D, Liu H, Chen C, Liu J, Yao Z, Xu J, Zhang M (2014) Crystallization and creep of the graphite nanosheets based poly(butylene adipate-co-terephthalate) biocomposites. Therm Acta 587:72–80. doi:10.1016/j.tca.2014.04.020

    Article  CAS  Google Scholar 

  45. Yang F, Qiu Z (2011) Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. J Appl Polym Sci 119:1426–1434. doi:10.1002/app.32619

    Article  CAS  Google Scholar 

  46. Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J Nanomaterials 2010:8. doi:10.1155/2010/287082

    Google Scholar 

  47. BASF Company. https://www.basf.com/br/. Accessed Dec 2015

  48. Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935. doi:10.1002/app.30011

    Article  CAS  Google Scholar 

  49. Ramakrishna S, Fujihara K (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co, Danvers, pp 22–152

    Book  Google Scholar 

  50. Fukuya MN, Senoo K, Kotera M, Yoshimoto M, Sakata O (2014) Controlling of crystallite orientation for poly(ethylene oxide) thin films with cellulose single nano-fibers. Polymer 55:4401–4404. doi:10.1016/j.polymer.2014.06.004

    Article  CAS  Google Scholar 

  51. Guerrini LM, Branciforti MC, Bretas RES (2006) Electrospinning of aqueous solution of poly(vinyl alcohol). Polímeros 16:286–293

    Article  CAS  Google Scholar 

  52. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272. doi:10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  53. Jin W-J, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Metals 157:454–459. doi:10.1016/j.synthmet.2007.05.011

    Article  CAS  Google Scholar 

  54. Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, Gomez Ribelles JL, Lanceros Mendez S (2012) Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym 87:1295–1301. doi:10.1016/j.carbpol.2011.09.017

    Article  CAS  Google Scholar 

  55. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913–6922. doi:10.1016/j.polymer.2007.09.017

    Article  CAS  Google Scholar 

  56. Ye P, Xu Z-K, Wu J, Innocent C, Seta P (2006) Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials 27:4169–4176. doi:10.1016/j.biomaterials.2006.03.027

    Article  CAS  Google Scholar 

  57. Costa RGF, Oliveira JE, Paula GF, Picciani PHS, Medeiros ES, Ribeiro C, Mattoso LHC (2012) Electrospinning of polymers in solution. Part I: theoretical foundation. Polímeros 22:170–177

    Article  CAS  Google Scholar 

  58. Nguyen T-H, Lee K-H, Lee B-T (2010) Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning. Mater Sci Eng C 30:944–950. doi:10.1016/j.msec.2010.04.012

    Article  CAS  Google Scholar 

  59. Wang X, Yue T, T-c Lee (2015) Development of pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control 54:150–157. doi:10.1016/j.foodcont.2015.02.001

    Article  CAS  Google Scholar 

  60. Tan L, Gan L, Hu J, Zhu Y, Han J (2015) Functional shape memory composite nanofibers with graphene oxide filler. Comp Part A Appl Sci Manuf 76:115–123. doi:10.1016/j.compositesa.2015.04.015

    Article  CAS  Google Scholar 

  61. Li G, Shankar S, Rhim J-W, Oh B-Y (2015) Effects of preparation method on properties of poly(butylene adipate-co-terephthalate) films. Food Sci Biotechnol 24:1679–1685. doi:10.1007/s10068-015-0218-5

    Article  CAS  Google Scholar 

  62. Ke P, Jiao X-N, Ge X-H, Xiao W-M, Yu B (2014) From macro to micro: structural biomimetic materials by electrospinning. RSC Adv 4:39704–39724. doi:10.1039/c4ra05098c

    Article  CAS  Google Scholar 

  63. Jing X, Mi H-Y, Cordie TM, Salick MR, Peng X-F, Turng L-S (2014) Fabrication of shish–kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: effect of solvents and matrigel functionalization. Polymer 55:5396–5406. doi:10.1016/j.polymer.2014.08.061

    Article  CAS  Google Scholar 

  64. Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO (2016) Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater Sci Eng C 59:782–791. doi:10.1016/j.msec.2015.10.075

    Article  CAS  Google Scholar 

  65. Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(2′-hydroxyphenyl)benzazole derivatives: effects of the solvent and the amino group position. J Lumin 126:728–734. doi:10.1016/j.jlumin.2006.11.007

    Article  CAS  Google Scholar 

  66. Rodembusch FS, Leusin FP, Medina LFC, Brandelli A, Stefani V (2005) Synthesis and spectroscopic characterization of new ESIPT fluorescent protein probes. Photochem Photobiol Sci 4:254–259. doi:10.1039/B409233C

    Article  CAS  Google Scholar 

  67. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425. doi:10.1016/j.polymer.2008.02.002

    Article  CAS  Google Scholar 

  68. Zhu Z, Zhang L, Smith S, Fong H, Sun Y, Gosztola D (2009) Fluorescence studies of electrospun MEH-PPV/PEO nanofibers. Synth Metals 159:1454–1459. doi:10.1016/j.synthmet.2009.03.025

    Article  CAS  Google Scholar 

  69. Tong Z, Ni L, Ling J (2014) Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria. Peptides 60:32–40. doi:10.1016/j.peptides.2014.07.020

    Article  CAS  Google Scholar 

  70. Su C, Li Y, Dai Y, Gao F, Tang K, Cao H (2016) Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning. Mater Lett 170:67–71. doi:10.1016/j.matlet.2016.01.133

    Article  CAS  Google Scholar 

  71. Cassu SN, Felisberti MI (2005) Dynamic mechanical behavior and relaxations in polymers and polymeric blends. Quim Nova 28:255–263

    Article  Google Scholar 

  72. Touati N, Kaci M, Bruzaud S, Grohens Y (2011) The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15A nanocomposites. Polym Degrad Stab 96:1064–1073. doi:10.1016/j.polymdegradstab.2011.03.015

    Article  CAS  Google Scholar 

  73. Bittmann B, Bouza R, Barral L, González-Rodríguez MV, Abad M-J (2012) Nanoclay-reinforced poly(butylene adipate-co-terephthalate) biocomposites for packaging applications. Polym Comp 33:2022–2028. doi:10.1002/pc.22344

    Article  CAS  Google Scholar 

  74. Liu B, Bhaladhare S, Zhan P, Jiang L, Zhang J, Liu L, Hotchkiss AT (2011) Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-co-terephthalate) blends. Ind Eng Chem Res 50:13859–13865. doi:10.1021/ie2017948

    Article  CAS  Google Scholar 

  75. Li W, Coffin DR, Jin TZ, Latona N, Liu C-K, Liu B, Zhang J, Liu L (2012) Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging. J Appl Polym Sci 126:E362–E373. doi:10.1002/app.36885

    Article  CAS  Google Scholar 

  76. Chen F, Zhang J (2010) In-situ poly(butylene adipate-co-terephthalate)/soy protein concentrate composites: effects of compatibilization and composition on properties. Polymer 51:1812–1819. doi:10.1016/j.polymer.2010.02.035

    Article  CAS  Google Scholar 

  77. Stempfle F, Ritter BS, Mülhaupt R, Mecking S (2014) Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chem 16:2008–2014. doi:10.1039/C4GC00114A

    Article  CAS  Google Scholar 

  78. Katančić Z, Travaš-Sejdić J, Hrnjak-Murgić Z (2011) Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polym Degrad Stab 96:2104–2111. doi:10.1016/j.polymdegradstab.2011.09.020

    Article  Google Scholar 

  79. Zhu L, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891–1899. doi:10.1002/app.20658

    Article  CAS  Google Scholar 

  80. Jung DS, Bodyfelt FW, Daeschel MA (1992) Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J Dairy Sci 75:387–393. doi:10.3168/jds.S0022-0302(92)77773-X

    Article  CAS  Google Scholar 

  81. Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469. doi:10.1111/j.1472-765X.2005.01796.x

    Article  CAS  Google Scholar 

  82. Hanušová K, Šťastná M, Votavová L, Klaudisová K, Dobiáš J, Voldřich M, Marek M (2010) Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: nisin and natamycin migration, efficiency in cheese packaging. J Food Eng 99:491–496. doi:10.1016/j.jfoodeng.2010.01.034

    Article  Google Scholar 

  83. Dheraprasart C, Rengpipat S, Supaphol P, Tattiyakul J (2009) Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat. J Food Protect 72:2293–2300

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the BASF Corporation for supplying the polymer, the Center of Electron Microscopy (CME-UFRGS, Porto Alegre, Brazil) for support on electron microscopy images and Juliana Ferreira Boelter for technical support on microbiological analyses. This work received financial support of CAPES and CNPq (Brasília, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gislene Zehetmeyer or Rosane Michele Duarte Soares.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1. FTIR spectra of nisin (TIFF 112 kb)

289_2016_1896_MOESM2_ESM.tif

Supplementary Fig. S2. (a) TGA curves of pure PBAT and PBAT/nisin nanofibers and (b) DTG curves of pure PBAT and PBAT/nisin nanofibers (TIFF 31 kb)

Supplementary Fig. S3. Image of water contact angle of pure PBAT nanofiber (TIFF 252 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M. et al. Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polym. Bull. 74, 3243–3268 (2017). https://doi.org/10.1007/s00289-016-1896-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1896-8

Keywords