Advertisement

Polymer Bulletin

, Volume 74, Issue 8, pp 3243–3268 | Cite as

Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers

  • Gislene ZehetmeyerEmail author
  • Stela Maris Meister Meira
  • Jóice Maria Scheibel
  • Cláudia de Brito da Silva
  • Fabiano Severo Rodembusch
  • Adriano Brandelli
  • Rosane Michele Duarte SoaresEmail author
Original Paper

Abstract

Biodegradable poly(butylene adipate-co-terephthalate) (PBAT) films incorporated with different levels of the antimicrobial peptide nisin were developed using the electrospinning technique. The characterization included thermal, structural, morphological, mechanical and antimicrobial properties. Thermal analysis indicated good thermal stability of PBAT. Nisin incorporation seems to increase nanofiber stability. The PBAT/nisin fibers presented no significant differences in the melting temperature (124–125.4 °C) and the glass transition temperature. PBAT showed characteristic diffraction peaks of the crystal structure. PBAT fibers were uniformly distributed and nisin was well dispersed throughout the fiber. The samples showed similar mechanical properties, and the addition of nisin caused no significant changes in the values of tensile strength, although Young’s modulus tended to decrease with higher nisin levels. Antimicrobial fibers inhibited the Gram-positive bacterium Listeria monocytogenes. These results provided insights into the interaction of nisin and PBAT in nanofibers produced by the electrospinning technique and their application in the food packaging industry.

Keywords

Antimicrobial films Electrospinning Nisin Poly(butylene adipate-co-terephthalate) 

Notes

Acknowledgements

The authors are grateful to the BASF Corporation for supplying the polymer, the Center of Electron Microscopy (CME-UFRGS, Porto Alegre, Brazil) for support on electron microscopy images and Juliana Ferreira Boelter for technical support on microbiological analyses. This work received financial support of CAPES and CNPq (Brasília, Brazil).

Supplementary material

289_2016_1896_MOESM1_ESM.tif (112 kb)
Supplementary Fig. S1. FTIR spectra of nisin (TIFF 112 kb)
289_2016_1896_MOESM2_ESM.tif (31 kb)
Supplementary Fig. S2. (a) TGA curves of pure PBAT and PBAT/nisin nanofibers and (b) DTG curves of pure PBAT and PBAT/nisin nanofibers (TIFF 31 kb)
289_2016_1896_MOESM3_ESM.tif (253 kb)
Supplementary Fig. S3. Image of water contact angle of pure PBAT nanofiber (TIFF 252 kb)

References

  1. 1.
    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Technol 63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7 CrossRefGoogle Scholar
  2. 2.
    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221. doi: 10.1039/b809074m CrossRefGoogle Scholar
  3. 3.
    Berber E, Horzum N, Hazer B, Demir MM (2016) Solution electrospinning of polypropylene-based fibers and their application in catalysis. Fiber Polym 17:760–768. doi: 10.1007/s12221-016-6183-7 CrossRefGoogle Scholar
  4. 4.
    Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735. doi: 10.1039/c2cs35083a CrossRefGoogle Scholar
  5. 5.
    Tao D, Higaki Y, Ma W, Wu H, Shinohara T, Yano T, Takahara A (2015) Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers. Polymer 60:284–291. doi: 10.1016/j.polymer.2015.01.048 CrossRefGoogle Scholar
  6. 6.
    Torres-Giner S, Gimenez E, Lagaron JM (2008) Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids 22:601–614. doi: 10.1016/j.foodhyd.2007.02.005 CrossRefGoogle Scholar
  7. 7.
    Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51:227–240. doi: 10.1016/j.foodhyd.2015.05.024 CrossRefGoogle Scholar
  8. 8.
    Prasanna J, Monisha T, Ranjithabala V, Gupta R, Vijayakumar E, Sangeetha D (2014) Effect of process parameters on poly (butylene adipate coterephthalate) nanofibers development by electrospinning technique. Adv Mat Res 894:360–363. doi:10.4028/www.scientific.net/AMR.894.36Google Scholar
  9. 9.
    Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Progr Polym Sci 38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001 CrossRefGoogle Scholar
  10. 10.
    Shin HU, Li Y, Paynter A, Nartetamrongsutt K, Chase GG (2015) Vertical rod method for electrospinning polymer fibers. Polymer 65:26–33. doi: 10.1016/j.polymer.2015.03.052 CrossRefGoogle Scholar
  11. 11.
    Zheng J, Zhang H, Zhao Z, Han CC (2012) Construction of hierarchical structures by electrospinning or electrospraying. Polymer 53:546–554. doi: 10.1016/j.polymer.2011.12.018 CrossRefGoogle Scholar
  12. 12.
    Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29. doi: 10.1016/j.polymer.2015.07.001 CrossRefGoogle Scholar
  13. 13.
    Wei Q (2012) Functional nanofibers and their applications. Woodhead Publishing, OxfordGoogle Scholar
  14. 14.
    Brandelli A, Taylor TM (2015) Nanostructured and nanoencapsulated natural antimicrobials for use in food products. In: Taylor TM (ed) Handbook of natural antimicrobials for food safety and quality. Elsevier, Oxford, pp 229–257CrossRefGoogle Scholar
  15. 15.
    Liu H, Pei H, Han Z, Feng G, Li D (2015) The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-polylysine and nisin against Bacillus subtilis. Food Control 47:444–450. doi: 10.1016/j.foodcont.2014.07.050 CrossRefGoogle Scholar
  16. 16.
    Şimşek Ö (2014) Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain. J Ind Microbiol Biotechnol 41:535–543. doi: 10.1007/s10295-013-1388-x CrossRefGoogle Scholar
  17. 17.
    Khaksar R, Hosseini SM, Hosseini H, Shojaee-Aliabadi S, Mohammadifar MA, Mortazavian AM, Khosravi-Darani K, Haji Seyed Javadi N, Komeily R (2014) Nisin-loaded alginate-high methoxy pectin microparticles: preparation and physicochemical characterisation. Int J Food Sci Technol 49:2076–2082. doi: 10.1111/ijfs.12516 CrossRefGoogle Scholar
  18. 18.
    Guo T, Hu S, Kong J (2013) Functional analysis and randomization of the nisin-inducible promoter for tuning gene expression in Lactococcus lactis. Curr Microbiol 66:548–554. doi: 10.1007/s00284-013-0312-y CrossRefGoogle Scholar
  19. 19.
    Arauz LJ, Jozala AF, Mazzola PG, Vessoni Penna TC (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20:146–154. doi: 10.1016/j.tifs.2009.01.056 CrossRefGoogle Scholar
  20. 20.
    Meira S, Zehetmeyer G, Jardim A, Scheibel J, de Oliveira R, Brandelli A (2014) Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol 7:3349–3357. doi: 10.1007/s11947-014-1335-5 CrossRefGoogle Scholar
  21. 21.
    Bastarrachea L, Dhawan S, Sablani SS, Mah J-H, Kang D-H, Zhang J, Tang J (2010) Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J Food Sci 75:E215–E224. doi: 10.1111/j.1750-3841.2010.01591.x CrossRefGoogle Scholar
  22. 22.
    Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12CrossRefGoogle Scholar
  23. 23.
    Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C 32:637–647. doi: 10.1016/j.msec.2012.01.021 CrossRefGoogle Scholar
  24. 24.
    Şanal T, Koçak İ, Hazer B (2016) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull. doi: 10.1007/s00289-016-1757-5 Google Scholar
  25. 25.
    Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. doi: 10.1007/s00289-015-1558-2 CrossRefGoogle Scholar
  26. 26.
    Toraman T, Hazer B (2014) Synthesis and characterization of the novel thermoresponsive conjugates based on poly(3-hydroxy alkanoates). J Polym Environ 22:159–166. doi: 10.1007/s10924-014-0646-y CrossRefGoogle Scholar
  27. 27.
    Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450. doi: 10.1016/j.polymer.2005.10.065 CrossRefGoogle Scholar
  28. 28.
    Shirai MA, Olivato JB, Garcia PS, Müller CMO, Grossmann MVE, Yamashita F (2013) Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition. Mater Sci Eng C 33:4112–4117. doi: 10.1016/j.msec.2013.05.054 CrossRefGoogle Scholar
  29. 29.
    Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926. doi: 10.1016/j.polymertesting.2013.05.001 CrossRefGoogle Scholar
  30. 30.
    Al-Itry R, Lamnawar K, Maazouz A (2014) Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta 53:501–517. doi: 10.1007/s00397-014-0774-2 CrossRefGoogle Scholar
  31. 31.
    Zehetmeyer G, Meira SMM, Scheibel JM, de Oliveira RVB, Brandelli A, Soares RMD (2016) Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. J Appl Polym Sci 133:1–10. doi: 10.1002/app.43212 CrossRefGoogle Scholar
  32. 32.
    Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. doi: 10.1016/j.polymdegradstab.2012.06.028 CrossRefGoogle Scholar
  33. 33.
    Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) Aromatic copolyester-based nano-biocomposites: elaboration, structural characterization and properties. J Polym Environ 14:393–401. doi: 10.1007/s10924-006-0033-4 CrossRefGoogle Scholar
  34. 34.
    Holler MG, Campo LF, Brandelli A, Stefani V (2002) Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins. J Photochem Photobiol A Chem 149:217–225. doi: 10.1016/S1010-6030(02)00008-4 CrossRefGoogle Scholar
  35. 35.
    ANVISA (2010) Agência Nacional de Vigilância Sanitária. Resolução-RDC n° 51, de 26 de Novembro de 2010. Regulamento Técnico MERCOSUL sobre Migração em Materiais, Embalagens e Equipamentos Plásticos Destinados a Entrar em Contato com o Alimento. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 30 nov. 2010. RDC n° 51, Regulamento técnico Mercosul sobre migração em materiais, embalagens e equipamentos plásticos destinados a entrar em contato com o alimento. Diário Oficial da União 75:244Google Scholar
  36. 36.
    Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–70. doi: 10.1046/j.1365-2672.2002.01490.x CrossRefGoogle Scholar
  37. 37.
    Muthuraj R, Misra M, Mohanty A (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J Polym Environ 22:336–349. doi: 10.1007/s10924-013-0636-5 CrossRefGoogle Scholar
  38. 38.
    Brandelero RPH, Grossmann MV, Yamashita F (2012) Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80. Carbohydr Polym 90:1452–1460. doi: 10.1016/j.carbpol.2012.07.015 CrossRefGoogle Scholar
  39. 39.
    Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochem Biophys Sin 39:549–559. doi: 10.1111/j.1745-7270.2007.00320.x CrossRefGoogle Scholar
  40. 40.
    Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Macromol Mater Eng 300:299–311. doi: 10.1002/mame.201400241 CrossRefGoogle Scholar
  41. 41.
    Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134. doi: 10.1007/s00289-009-0072-9 CrossRefGoogle Scholar
  42. 42.
    Ibrahim N, Rahim N, Wan Yunus W, Sharif J (2011) A study of poly vinyl chloride/poly(butylene adipate-co-terephthalate) blends. J Polym Res 18:891–896. doi: 10.1007/s10965-010-9486-1 CrossRefGoogle Scholar
  43. 43.
    Marques MV, Lunz J, Aguiar V, Grafova I, Kemell M, Visentin F, Sartori A, Grafov A (2015) Thermal and mechanical properties of sustainable composites reinforced with natural fibers. J Polym Environ 23:251–260. doi: 10.1007/s10924-014-0687-2 CrossRefGoogle Scholar
  44. 44.
    Feng S, Wu D, Liu H, Chen C, Liu J, Yao Z, Xu J, Zhang M (2014) Crystallization and creep of the graphite nanosheets based poly(butylene adipate-co-terephthalate) biocomposites. Therm Acta 587:72–80. doi: 10.1016/j.tca.2014.04.020 CrossRefGoogle Scholar
  45. 45.
    Yang F, Qiu Z (2011) Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. J Appl Polym Sci 119:1426–1434. doi: 10.1002/app.32619 CrossRefGoogle Scholar
  46. 46.
    Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J Nanomaterials 2010:8. doi: 10.1155/2010/287082 Google Scholar
  47. 47.
    BASF Company. https://www.basf.com/br/. Accessed Dec 2015
  48. 48.
    Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935. doi: 10.1002/app.30011 CrossRefGoogle Scholar
  49. 49.
    Ramakrishna S, Fujihara K (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co, Danvers, pp 22–152CrossRefGoogle Scholar
  50. 50.
    Fukuya MN, Senoo K, Kotera M, Yoshimoto M, Sakata O (2014) Controlling of crystallite orientation for poly(ethylene oxide) thin films with cellulose single nano-fibers. Polymer 55:4401–4404. doi: 10.1016/j.polymer.2014.06.004 CrossRefGoogle Scholar
  51. 51.
    Guerrini LM, Branciforti MC, Bretas RES (2006) Electrospinning of aqueous solution of poly(vinyl alcohol). Polímeros 16:286–293CrossRefGoogle Scholar
  52. 52.
    Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272. doi: 10.1016/S0032-3861(00)00250-0 CrossRefGoogle Scholar
  53. 53.
    Jin W-J, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Metals 157:454–459. doi: 10.1016/j.synthmet.2007.05.011 CrossRefGoogle Scholar
  54. 54.
    Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, Gomez Ribelles JL, Lanceros Mendez S (2012) Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym 87:1295–1301. doi: 10.1016/j.carbpol.2011.09.017 CrossRefGoogle Scholar
  55. 55.
    Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913–6922. doi: 10.1016/j.polymer.2007.09.017 CrossRefGoogle Scholar
  56. 56.
    Ye P, Xu Z-K, Wu J, Innocent C, Seta P (2006) Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials 27:4169–4176. doi: 10.1016/j.biomaterials.2006.03.027 CrossRefGoogle Scholar
  57. 57.
    Costa RGF, Oliveira JE, Paula GF, Picciani PHS, Medeiros ES, Ribeiro C, Mattoso LHC (2012) Electrospinning of polymers in solution. Part I: theoretical foundation. Polímeros 22:170–177CrossRefGoogle Scholar
  58. 58.
    Nguyen T-H, Lee K-H, Lee B-T (2010) Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning. Mater Sci Eng C 30:944–950. doi: 10.1016/j.msec.2010.04.012 CrossRefGoogle Scholar
  59. 59.
    Wang X, Yue T, T-c Lee (2015) Development of pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control 54:150–157. doi: 10.1016/j.foodcont.2015.02.001 CrossRefGoogle Scholar
  60. 60.
    Tan L, Gan L, Hu J, Zhu Y, Han J (2015) Functional shape memory composite nanofibers with graphene oxide filler. Comp Part A Appl Sci Manuf 76:115–123. doi: 10.1016/j.compositesa.2015.04.015 CrossRefGoogle Scholar
  61. 61.
    Li G, Shankar S, Rhim J-W, Oh B-Y (2015) Effects of preparation method on properties of poly(butylene adipate-co-terephthalate) films. Food Sci Biotechnol 24:1679–1685. doi: 10.1007/s10068-015-0218-5 CrossRefGoogle Scholar
  62. 62.
    Ke P, Jiao X-N, Ge X-H, Xiao W-M, Yu B (2014) From macro to micro: structural biomimetic materials by electrospinning. RSC Adv 4:39704–39724. doi: 10.1039/c4ra05098c CrossRefGoogle Scholar
  63. 63.
    Jing X, Mi H-Y, Cordie TM, Salick MR, Peng X-F, Turng L-S (2014) Fabrication of shish–kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: effect of solvents and matrigel functionalization. Polymer 55:5396–5406. doi: 10.1016/j.polymer.2014.08.061 CrossRefGoogle Scholar
  64. 64.
    Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO (2016) Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater Sci Eng C 59:782–791. doi: 10.1016/j.msec.2015.10.075 CrossRefGoogle Scholar
  65. 65.
    Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(2′-hydroxyphenyl)benzazole derivatives: effects of the solvent and the amino group position. J Lumin 126:728–734. doi: 10.1016/j.jlumin.2006.11.007 CrossRefGoogle Scholar
  66. 66.
    Rodembusch FS, Leusin FP, Medina LFC, Brandelli A, Stefani V (2005) Synthesis and spectroscopic characterization of new ESIPT fluorescent protein probes. Photochem Photobiol Sci 4:254–259. doi: 10.1039/B409233C CrossRefGoogle Scholar
  67. 67.
    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425. doi: 10.1016/j.polymer.2008.02.002 CrossRefGoogle Scholar
  68. 68.
    Zhu Z, Zhang L, Smith S, Fong H, Sun Y, Gosztola D (2009) Fluorescence studies of electrospun MEH-PPV/PEO nanofibers. Synth Metals 159:1454–1459. doi: 10.1016/j.synthmet.2009.03.025 CrossRefGoogle Scholar
  69. 69.
    Tong Z, Ni L, Ling J (2014) Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria. Peptides 60:32–40. doi: 10.1016/j.peptides.2014.07.020 CrossRefGoogle Scholar
  70. 70.
    Su C, Li Y, Dai Y, Gao F, Tang K, Cao H (2016) Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning. Mater Lett 170:67–71. doi: 10.1016/j.matlet.2016.01.133 CrossRefGoogle Scholar
  71. 71.
    Cassu SN, Felisberti MI (2005) Dynamic mechanical behavior and relaxations in polymers and polymeric blends. Quim Nova 28:255–263CrossRefGoogle Scholar
  72. 72.
    Touati N, Kaci M, Bruzaud S, Grohens Y (2011) The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15A nanocomposites. Polym Degrad Stab 96:1064–1073. doi: 10.1016/j.polymdegradstab.2011.03.015 CrossRefGoogle Scholar
  73. 73.
    Bittmann B, Bouza R, Barral L, González-Rodríguez MV, Abad M-J (2012) Nanoclay-reinforced poly(butylene adipate-co-terephthalate) biocomposites for packaging applications. Polym Comp 33:2022–2028. doi: 10.1002/pc.22344 CrossRefGoogle Scholar
  74. 74.
    Liu B, Bhaladhare S, Zhan P, Jiang L, Zhang J, Liu L, Hotchkiss AT (2011) Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-co-terephthalate) blends. Ind Eng Chem Res 50:13859–13865. doi: 10.1021/ie2017948 CrossRefGoogle Scholar
  75. 75.
    Li W, Coffin DR, Jin TZ, Latona N, Liu C-K, Liu B, Zhang J, Liu L (2012) Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging. J Appl Polym Sci 126:E362–E373. doi: 10.1002/app.36885 CrossRefGoogle Scholar
  76. 76.
    Chen F, Zhang J (2010) In-situ poly(butylene adipate-co-terephthalate)/soy protein concentrate composites: effects of compatibilization and composition on properties. Polymer 51:1812–1819. doi: 10.1016/j.polymer.2010.02.035 CrossRefGoogle Scholar
  77. 77.
    Stempfle F, Ritter BS, Mülhaupt R, Mecking S (2014) Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chem 16:2008–2014. doi: 10.1039/C4GC00114A CrossRefGoogle Scholar
  78. 78.
    Katančić Z, Travaš-Sejdić J, Hrnjak-Murgić Z (2011) Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polym Degrad Stab 96:2104–2111. doi: 10.1016/j.polymdegradstab.2011.09.020 CrossRefGoogle Scholar
  79. 79.
    Zhu L, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891–1899. doi: 10.1002/app.20658 CrossRefGoogle Scholar
  80. 80.
    Jung DS, Bodyfelt FW, Daeschel MA (1992) Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J Dairy Sci 75:387–393. doi: 10.3168/jds.S0022-0302(92)77773-X CrossRefGoogle Scholar
  81. 81.
    Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469. doi: 10.1111/j.1472-765X.2005.01796.x CrossRefGoogle Scholar
  82. 82.
    Hanušová K, Šťastná M, Votavová L, Klaudisová K, Dobiáš J, Voldřich M, Marek M (2010) Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: nisin and natamycin migration, efficiency in cheese packaging. J Food Eng 99:491–496. doi: 10.1016/j.jfoodeng.2010.01.034 CrossRefGoogle Scholar
  83. 83.
    Dheraprasart C, Rengpipat S, Supaphol P, Tattiyakul J (2009) Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat. J Food Protect 72:2293–2300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gislene Zehetmeyer
    • 1
    Email author
  • Stela Maris Meister Meira
    • 2
  • Jóice Maria Scheibel
    • 1
  • Cláudia de Brito da Silva
    • 3
  • Fabiano Severo Rodembusch
    • 3
  • Adriano Brandelli
    • 2
  • Rosane Michele Duarte Soares
    • 1
    Email author
  1. 1.Poli-BIO, Laboratório de Biomateriais Poliméricos, Institute of ChemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de AlimentosUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Institute of ChemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations