The influence of filler treatment on the mechanical properties and phase behavior of thermoplastic polyurethane/polypropylene blends

Abstract

Thermoplastic polyurethane (TPU) and isotactic polypropylene (iPP) composites and their talc reinforced blends containing untreated and silane treated talc were investigated. The talc surface was modified with organosilane coupling agent in order to improve the polymer–filler interface interaction. TPU has been blended with iPP in a twin screw extruder and samples for investigation were prepared by injection moulding at different concentrations. The neat polymers, composites and blends were characterized with DMA, XRD, FTIR and tensile testing. The obtained results showed that mechanical properties of the talc filled TPU and iPP composites and TPU/iPP blends were improved with the addition of untreated and silane treated talc. The storage modulus of the TPU/iPP blends increased with the addition of untreated and silane treated talc, due to a stiffer interface which talc generated in the polymer matrix. The comparison among samples filled with untreated and silane treated talc filler showed that the polymer composites and TPU/iPP blends filled with silane treated talc displayed better mechanical properties. Silane addition improves the adhesion between the filler and the polymer matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Kamble A, Singh V, Thomas M, John N (2011) Effectiveness of compatibilizers and filler on the performance of the blends of thermoplastic polyurethane/polyolefins. Chem Sci J 34:1–9

    Google Scholar 

  2. 2.

    Fujiyama M, Wakino T (1991) Crystal orientation in injection molding of talc filled polypropylene. J Appl Polym Sci 42:9–20. doi:10.1002/app.1991.070420103

    CAS  Article  Google Scholar 

  3. 3.

    Leong YW, Bakar MB, Ariffin A (2005) Effects of filler treatments on the mechanical, flow, thermal, and morphological properties of talc and calcium carbonate filled polypropylene hybrid composites. J Appl Polym Sci 98(1):413–426. doi:10.1002/app.21507

    CAS  Article  Google Scholar 

  4. 4.

    Khunová V, Hurst J, Janigová I, Smatko V (1999) Plasma treatment of particulate polymer composites for analyses by scanning electron microscopy: II. A study of highly filled polypropylene/calcium carbonates composites. Polym Test 18:501–509. doi:10.1016/S0142-9418(98)00038-5

    Article  Google Scholar 

  5. 5.

    Fujiyama M, Wakino T (1991) Structures and properties of injection moldings of crystallization nucleator-added polypropylenes. I. Structure–property relationships. J Appl Polym Sci 42:2739–2747. doi:10.1002/app.1991.070421012

    CAS  Article  Google Scholar 

  6. 6.

    Dıez-Gutiérrez S, Rodrıguez-Pérez MA, De Saja JA, Velasco JI (1999) Dynamic mechanical analysis of injection-moulded discs of polypropylene and untreated and silane-treated talc-filled polypropylene composites. Polymer 40:5345–5353. doi:10.1016/S0032-3861(98)00754-X

    Article  Google Scholar 

  7. 7.

    Zoltan D, Pukanszky B, Nagy J Jr (1999) Possible coupling reactions of functional silanes and polypropylene. Polymer 40:1763–1773. doi:10.1016/S0032-3861(98)00396-6

    Article  Google Scholar 

  8. 8.

    Metın D, Tihminlioğlu F, Balköse D, Ülkü S (2004) The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos Part A Appl Sci Manuf 35(1):23–32. doi:10.1016/j.compositesa.2003.09.021

    Article  Google Scholar 

  9. 9.

    Jesionowski T, Krysztafkiewicz A (2000) Comparison of the techniques used to modify amorphous hydrated silicas. J Non-Crystall Solids 277:45–57. doi:10.1016/S0022-3093(00)00299-4

    CAS  Article  Google Scholar 

  10. 10.

    Ogasawara T, Yoshino A, Okabayashi H, O’Connor CJ (2001) Polymerization process of the silane coupling agent 3-aminopropyltriethoxy silane-1 H NMR spectra and kinetics of ethanol release. Collo Surf A Physicochem Eng Asp 180:317–322. doi:10.1016/S0927-7757(00)00813-X

    CAS  Article  Google Scholar 

  11. 11.

    Govorčin Bajsić E, Ocelić Bulatović V, Rek V (2015) The influence of filler treatment on the properties of TPU/PP blends: I. Thermal properties and stability. Polym Eng Sci 55:1920–1930. doi:10.1002/pen.24033

    Article  Google Scholar 

  12. 12.

    Trotignon JP, Tcharkhtchi A (1996) Fatigue behaviour of filled polymers. Macromol Symp 108:231–245. doi:10.1002/masy.19961080119

    CAS  Article  Google Scholar 

  13. 13.

    Jančář J, Dibenedetto AT, Dianselmo A (1996) Engineered interphases in particulate filled polypropylene. Chem Pap 50:228–232. 504a228.pdf

  14. 14.

    Stamhuis JE (1984) Mechanical properties and morphology of polypropylene composites. Talc filled elastomer modified polypropylene. Polym Comp 5:202–207. doi:10.1002/pc.750050308

    CAS  Article  Google Scholar 

  15. 15.

    Velasco JI, De Saja JA, Martinez AB (1996) Crystallization behavior of polypropylene filled with surface modified talc. J Appl Polym Sci 61:125–132. doi:10.1002/(SICI)1097-4628(19960705)61:1<125:AID-APP14>3.0.CO;2-6

    CAS  Article  Google Scholar 

  16. 16.

    Ray SS, Bandyopadhyay J, Bousmina M (2008) Influence of degree of intercalation on the crystal growth kinetics of poly [(butylene succinate)-co-adipate] nanocomposites. Eur Polym J 44:3133–3145. doi:10.1016/j.eurpolymj.2008.07.035

    Article  Google Scholar 

  17. 17.

    Pustak A, Pucić I, Denac M, Švab I, Pohleven J, Musil V, Šmit I (2013) Morphology of polypropylene/silica nano- and microcomposites. J Appl Polym Sci 128:3099–3106. doi:10.1002/app.38487

    CAS  Article  Google Scholar 

  18. 18.

    Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26:1855–1863. doi:10.1016/0032-3861(85)90015-1

    CAS  Article  Google Scholar 

  19. 19.

    Kalfus J, Jancar J (2007) Elastic response of nanocomposite poly(vinylacetate)-hydroxyapatite with varying particle shape. Polym Compos 28:365–371. doi:10.1002/pc.20273

    CAS  Article  Google Scholar 

  20. 20.

    Hoyle CE, Kim KJ, No YG, Nelson GL (1987) Photolysis of segmented polyurethanes. The role of hard segment content and hydrogen bonding. J Appl Polym Sci 34:763–774. doi:10.1002/app.1987.070340227

    CAS  Article  Google Scholar 

  21. 21.

    Dillon JG (1989) Infrared spectroscopic atlas of polyurethanes (including model compounds). Technomic Publ. Co., Lancester

    Google Scholar 

  22. 22.

    Seymour RW, Estes GM, Cooper SL (1970) Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromolecules 3:579–583. doi:10.1021/ma60017a021

    Article  Google Scholar 

  23. 23.

    Silverstein RM, Webster FX, Klemie DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New York

    Google Scholar 

  24. 24.

    Coleman MN, Lee KH, Skrovanek DJ, Painter PC (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149–2157. doi:10.1021/ma00162a008

    CAS  Article  Google Scholar 

  25. 25.

    Srichatrapimuk VW, Cooper SL (1978) Infrared thermal analysis of polyurethane block polymers. J Macromol Sci Part B Phys 15:267–311. doi:10.1080/00222347808212599

    Article  Google Scholar 

  26. 26.

    Tadokoro H, Kobayashi M, Ukita M, Yasufuku K, Murahashi S (1965) Normal vibrations of the polymer molecules of helical conformation. V. Isotactic polypropylene and its deuteroderivatives. J Chem Phys 42:1432–1449. doi:10.1063/1.1696134

    CAS  Article  Google Scholar 

  27. 27.

    Danec M, Šmit I, Musil V (2005) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 1. Structure. Appl Sci Manuf 36:1094–1101. doi:10.1016/j.compositesa.2005.01.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Ministry of Science, Education and Sport of the Republic of Croatia (Project No. 125-1252971-2578).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emi Govorčin Bajsić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bajsić, E.G., Filipan, V., Bulatović, V.O. et al. The influence of filler treatment on the mechanical properties and phase behavior of thermoplastic polyurethane/polypropylene blends. Polym. Bull. 74, 2939–2955 (2017). https://doi.org/10.1007/s00289-016-1879-9

Download citation

Keywords

  • Blends
  • Thermoplastic polyurethane
  • Polypropylene
  • Talc
  • Silane coupling agents
  • Mechanical properties