Skip to main content
Log in

Electrospinning TPU/poly o-phenetidine (POEA) fibers: influence of POEA on fiber morphology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The synthesis of poly (o-phenetidine) (POEA) was performed via chemical oxidative method and doped with dodecylbenzenesulfonic acid. Electrospun fibers of thermoplastic polyurethane (TPU)/poly o-phenetidine (POEA) blends were produced. Parameters such as the distance between collector and needle, as well as the applied voltage and the ratio of POEA content were evaluated. The fiber morphology, chemical structure and thermal analysis of the mats were analyzed. TPU nanofibers showed cylindrical morphology with many beads and the fiber diameter was around 330 nm. With the addition of POEA at a percentage of 30 wt% it was possible to produce uniform fibers without beads with diameters around 400 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li XG, Duan W, Huang MR, Yang YL, Zhao DY (2003) Preparation and solubility of a partial ladder copolymer from p-phenylenediamine and o-phenetidine. Polymer 44:6273–6285. doi:10.1016/S0032-3861(03)00677-3

    Article  CAS  Google Scholar 

  2. Wang TL, Yang CH, Shieh YT, Yeh AC (2009) Synthesis and properties of conducting organic/inorganic polyurethane hybrids. Eur Polym J 45:387–397. doi:10.1016/j.eurpolymj.2008.11.020

    Article  CAS  Google Scholar 

  3. Souza FG, Anzai TK, Melo AP, Soares BM, Nele M, Pinto JC (2008) Influence of reaction media on pressure sensitivity of polyanilines doped with DBSA. J Appl Polym Sci 107:2404–2413. doi:10.1002/app.27290

    Article  Google Scholar 

  4. Chen CH, Kan YT, Mao CF, Liao WT, Hsieh CD (2013) Fabrication and characterization of water-based polyurethane/polyaniline conducting blend films. Surf Coat Technol 231:71–76. doi:10.1016/j.surfcoat.2012.03056

    Article  CAS  Google Scholar 

  5. Dogan SK, Reyes EA, Rastogi S, Ozkoc G (2014) Reactive compatibilization of PLA/TPU blends with a diisocyanate. J Appl Polym Sci 131:1–10. doi:10.1002/app.40251

    Article  Google Scholar 

  6. Paaver U, Heinamaki J, Laidmae I, Lust A, Kozlava J, Sillaste E, Kirsimae K, Veski P, Kogermann K (2015) Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm 479:252–260. doi:10.1016/j.ijpharm.2014.12024

    Article  CAS  Google Scholar 

  7. Patil PT, Rajshri AS, Kondawar SB (2015) Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater. Sci. 10:195–204. doi:10.1016/j.mspro.2015.06041

    Article  CAS  Google Scholar 

  8. Li P, Zheng X, Zhang Y, Yuan M, Jiang B, Deng S (2015) Humidity sensor based on electrospun (Na 0.5 Bi 0.5) 0.94 TiO3–Ba 0.06 TiO3 nanofibers. Ceram Int 41:14251–14257. doi:10.1016/j.ceramint.2015.07054

    Article  CAS  Google Scholar 

  9. Brugnollo ED, Paterno LG, Leite LF, Fonseca FJ, Constantino CJL, Antunes AP, Mattoso LHC (2008) Fabrication and characterization of chemical sensors made from nanostructured films of poly (o-ethoxyaniline) prepared with different doping acids. Thin Solid Film 516:3274–3281. doi:10.1016/j.tsf.2007.08.118

    Article  CAS  Google Scholar 

  10. Kucinska-Lipka J, Gubanska I, Janik H, Sien Kiewicz M (2015) Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C 46:166–176. doi:10.1016/j.msec.2014.10.027

    Article  CAS  Google Scholar 

  11. Mi HY, Salick MR, Jing X, Crone WC, Peng XF, Turng LS (2015) Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration. J Biomater Mater Res Part A 103:593–603. doi:10.1002/jbm.a.35208

    Article  Google Scholar 

  12. Ohlan A, Singh K, Gandhi N, Chandra A, Dhawan SK (2011) Microwave absorption properties of NiCoFe2O4-graphite embedded poly (o-phenetidine) nanocomposites. AIP Adv 1:032157-1–032157-7. doi: 10.1063/1.3642603

  13. Piza AM, Constantino CJL, Venancio EC, Mattoso LHC (2003) Interaction mechanism of poly (o-ethoxyaniline) and collagen blends. Polymer 44:5663–5670. doi:10.1016/S0032-3861(03)00612-8

    Article  CAS  Google Scholar 

  14. Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55:4728–4737. doi:10.1016/j.polymer.2014.06032

    Article  CAS  Google Scholar 

  15. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi:10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  16. Costa RGF, Oliveira JE, Paula GF, Picciani PHS, Medeiros ES, Ribeiro C, Mattoso LHC (2012) Eletrofiação de Polímeros em Solução. Parte I: Fundamentação Teórica. Polímeros: Ciência e Tecnologia 22:170–177

    Article  CAS  Google Scholar 

  17. Picciani PHS, Soares BG, Medeiros ES, Souza FGJ, Wood DF, Orts WJ, Mattoso LHC (2009) Development of conducting polyaniline/poly (lactic acid) nanofibers by electrospinning. J Appl Polym Sci 112:744–753. doi:10.1002/app.29447

    Article  CAS  Google Scholar 

  18. Mattoso LHC, Manohar SK, Macdiarmid AG, Eptein AJ (1995) Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. J Polym Sci Part A Polym Chem 33:1227–1234. doi:10.1002/pola.1995.080330805

    Article  CAS  Google Scholar 

  19. Cruz KFN, Formaggio DMD, Tada DB, Cristovan FH, Guerrini LM (2016) Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications. J Biomed Mater Res Part A. doi:10.1002/jbm.a.35928

    Google Scholar 

  20. Barick AK, Tripathy DK (2012) Preparation and characterization of carbon nanofiber reinforced thermoplastic polyurethane nanocomposites. J Appl Polym Sci 124:765–780. doi:10.1002/app.35066

    Article  CAS  Google Scholar 

  21. Vashisth P, Pruthi PA, Singh RP, Pruthi V (2014) Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydr Polym 109:16–21. doi:10.1016/j.carbpol.2014.03003

    Article  CAS  Google Scholar 

  22. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 39:19–26. doi:10.1016/j.foodhyd.2013.12.022

    Article  CAS  Google Scholar 

  23. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. doi:10.1002/adma.200400719

    Article  CAS  Google Scholar 

  24. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:09955–09967. doi:10.1016/S0032-3861(01)00540-7

    Article  CAS  Google Scholar 

  25. Gribkova OL, Nekrasov AA, Ivanov VF, Kozarenko OA, Posudievsky OY, Vannikov AV, Koshechko VG, Pokhodenko VD (2013) Mechanochemical synthesis of polyaniline in the presence of polymeric sulfonic acids of different structure. Synth Met 180:64–72. doi:10.1016/j.synthmet.2013.08.004

    Article  CAS  Google Scholar 

  26. Cossari P, Bavastrello V, Nicolini C (2013) Influence of multi-walled carbon nanotubes concentration on the properties of nanocomposites with poly(o-ethoxyaniline). Synth Met 176:1–10. doi:10.1016/j.synthmet.2013.08.004

    Article  CAS  Google Scholar 

  27. Misoon O, Seok K (2012) Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta 59:196–201. doi:10.1016/j.electacta.2011.10058

    Article  CAS  Google Scholar 

  28. Sattar R, Kausar A, Siddiq M (2015) Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends. Chin J Polym Sci 33:1313–1324. doi:10.1007/s10118-015-1680-5

    Article  CAS  Google Scholar 

  29. Wang J, Yang W, Tong P, Lei J (2010) A novel soluble PANI/TPU composite doped with inorganic and organic compound acid. J Appl Polym Sci 115:1886–1893. doi:10.1002/app.31358

    Article  CAS  Google Scholar 

  30. Kannan M, Bhagawan SS, Thomas S, Joseph K (2013) Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim 112:1231–1244. doi:10.1007/s10973-012-2693-8

    Article  CAS  Google Scholar 

  31. Frick A, Rockman A (2004) Characterization of TPU-elastomers by thermal analysis (DSC). Polym Test 23:413–417. doi:10.1016/j.polymertesting.2003.09.013

    Article  CAS  Google Scholar 

  32. Vicentini DS, Barra GMO, Bertolino JR, Pires ATN (2007) Polyaniline/thermoplastic polyurethane blends: preparation and evaluation of electrical conductivity. Eur Polym J 43:4565–4572. doi:10.1016/j.eurpolymj.2007.06046

    Article  CAS  Google Scholar 

  33. Norrisa ID, Shaker MM, Kob FK, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114:109–114. doi:10.1016/S0379-6779(00)00217-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq and FAPESP for the financial support 2011/21694-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Ferreira Noronha Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, K.F.N., Botelho, E.C., Cristovan, F.H. et al. Electrospinning TPU/poly o-phenetidine (POEA) fibers: influence of POEA on fiber morphology. Polym. Bull. 74, 2905–2919 (2017). https://doi.org/10.1007/s00289-016-1869-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1869-y

Keywords

Navigation