Advertisement

Polymer Bulletin

, Volume 74, Issue 7, pp 2741–2754 | Cite as

Preparation and characterization of crosslinked PVA/PAMPS blends catalytic membranes for biodiesel production

  • Zazil Corzo-González
  • Maria Isabel Loria-Bastarrachea
  • Emmanuel Hernández-Nuñez
  • Manuel Aguilar-VegaEmail author
  • Maria Ortencia González-DíazEmail author
Original Paper
  • 334 Downloads

Abstract

Crosslinked PVA/PAMPS catalytic membranes as heterogeneous catalyst for biodiesel production were successfully prepared with different poly (2-acryloamido-2-1-propanesulfonic acid) (PAMPS) ratios (30, 20 and 10 wt%) and crosslinked with succinic acid (SA) (5 and 10 wt%) at two different temperatures (100 and 120 °C). FTIR confirmed the successful crosslinking by esterification of the –OH groups in PVA with SA. PVA/PAMPS blend membranes crosslinked with 10 wt% SA at 100 °C were highly effective as heterogeneous catalysts for the transesterification of soybean oil with methanol (90–94% conversion) in comparison with PVA/PAMPS membranes crosslinked with 5 wt% SA. The performance of the catalytic membranes is well correlated with the ion exchange capacity (IEC), swelling properties and crosslinking degree. The reuse of PVA/PAMPS catalytic membrane for a second reaction run indicates that activity of the membrane remains unchanged.

Keywords

PVA PAMPS Polymer blend Catalytic membranes Biodiesel production 

Notes

Acknowledgements

This project was founded by SENER CEMIE-BIO 250014. M. O. González-Díaz acknowledges the Cátedras CONACyT Project No. 3139. Z. Corzo-Gonzalez gratefully acknowledges a Grant No. 376912 from CONACyT. NMR measurements were conducted at LANNBIO Cinvestav-Mérida and we want to thank Dr. Patricia Quintana for that.

References

  1. 1.
    Pinnarat T, Savage PE (2008) Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Ind Eng Chem Res 47:6801–6808CrossRefGoogle Scholar
  2. 2.
    Casimiro MH, Silva AG, Alvarez R, Ferreira LM, Ramos AM, Vital J (2014) PVA supported catalytic membranes obtained by γ-irradiation for biodiesel production. Radiat Phys Chem 94:171–175CrossRefGoogle Scholar
  3. 3.
    He B, Shao Y, Liang M, Li J, Cheng Y (2015) Biodiesel production from soybean oil by guanidinylated chitosan. Fuel 159:33–39CrossRefGoogle Scholar
  4. 4.
    Lam MK, Tan KT, Lee KT, Mohamed AR (2009) Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renew Sust Energ Rev 13:1456–1464CrossRefGoogle Scholar
  5. 5.
    Talebian-Kiakalaieh A, Amin NAS, Mazaheri H (2013) A review on novel processes of biodiesel production from waste cooking oil. Appl Energy 104:683–710CrossRefGoogle Scholar
  6. 6.
    Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Transesterification of soybean oil with zeolite and metal catalyst. Appl Catal A Gen 257:213–223CrossRefGoogle Scholar
  7. 7.
    Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid superacid catalyst in fixed bed reactor under atmospheric pressure. Catal Commun 5:721–723CrossRefGoogle Scholar
  8. 8.
    Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777CrossRefGoogle Scholar
  9. 9.
    Buonomenna MG, Choi SH, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia Pac J Chem Eng 5:26–34CrossRefGoogle Scholar
  10. 10.
    Zhu M, He B, Shi W, Feng Y, Ding J, Li J, Zeng F (2010) Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production. Fuel 89:2299–2304CrossRefGoogle Scholar
  11. 11.
    Guerreiro L, Castanheiro JE, Fonseca IM, Martin-Aranda RM, Ramos AM, Vital J (2006) Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118:166–171CrossRefGoogle Scholar
  12. 12.
    Guerreiro L, Pereira PM, Fonseca IM, Martin-Aranda RM, Ramos AM, Dias JML, Oliveira R, Vital J (2010) PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today 156:191–197CrossRefGoogle Scholar
  13. 13.
    Shi W, He B, Ding J, Li J, Liang X (2010) Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Bioresour Technol 101:1501–1505CrossRefGoogle Scholar
  14. 14.
    Shi W, He B, Li J (2011) Esterification of acidified oil with methanol by SPES/PES catalytic membrane. Bioresour Technol 102:5389–5393CrossRefGoogle Scholar
  15. 15.
    Shi W, Yang M, Li H, Zhou R, Zhang H (2015) Preparation and characterization of sulfonated poly(ether sulfone) (SPES)/phosphotungstic acid (PWA) hybrid membrane for biodiesel production. Catal Lett 145(1581):1590Google Scholar
  16. 16.
    Shi W, He B, Cao Y, Li J, Yang F, Cui Z, Zou Z, Guo S, Qian X (2013) Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies. Bioresour Technol 129:100–107CrossRefGoogle Scholar
  17. 17.
    Hong-lei Z, Jin-cheng D, Zeng-dian Z (2012) Esterification of different FFAs with methanol by CERP/PES hybrid catalytic membrane for biodiesel production. J Cent South Univ 19:2895–2900CrossRefGoogle Scholar
  18. 18.
    Ye Y-S, Rick J, Hwang B-J (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4:913–963CrossRefGoogle Scholar
  19. 19.
    Karlsson LE, Wesslén B, Jannasch P (2002) Water absorption and proton conductivity of sulfonated acrylamide copolymers. Electrochim Acta 47:3269–3275CrossRefGoogle Scholar
  20. 20.
    Qiao J, Hamaya T, Okada T (2005) Chemically modified poly(vinyl alcohol)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a novel proton-conducting fuel cell membrane. Chem Mater 17:2413–2421CrossRefGoogle Scholar
  21. 21.
    Qiao J, Hamaya T, Okada T (2005) New highly conductive polymer membranes poly(vinylalcohol)-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PVA-PAMPS). J Mater Chem 15:4414–4423CrossRefGoogle Scholar
  22. 22.
    Qiao J, Hamaya T (2007) PVA-PAMPS based semi-IPNs as new type of proton-conducting membranes for low-temperature DMFC. J New Mat Electr Sys 10:231–236Google Scholar
  23. 23.
    Shen Y, Xi J, Qiu X, Zhu W (2007) A new conductive membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. Electrochim Acta 52:6956–6961CrossRefGoogle Scholar
  24. 24.
    Zygadlo-Monikowska E, Florjanczyk Z, Wielgus-Barry E, Hildebrand E (2006) Proton conducting gel polyelectrolytes based on 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers: part II. Hydrogels. J Power Sources 159:392–398CrossRefGoogle Scholar
  25. 25.
    Pei H, Hong L, Lee JY (2006) Polymer electrolyte membrane based on 2-acrylamido-2-methyl-1-propanesulfonic acid fabricated by embedded polymerization. J Power Sources 160:949–956CrossRefGoogle Scholar
  26. 26.
    Caetano CS, Guerreiro L, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Appl Catal A Gen 359:41–46CrossRefGoogle Scholar
  27. 27.
    Gelbard G, Brès O, Vargas RM, Vielfaure F, Schuchardt UF (1995) 1 H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. J Am Oil Chem Soc 72:1239–1241CrossRefGoogle Scholar
  28. 28.
    Knothe G (2000) Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1 H nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 77:489–493CrossRefGoogle Scholar
  29. 29.
    Shi W, Li H, Zhou R, Zhang H, Du Q (2016) Biodiesel production from soybean oil by quaternized polysulfone alkali-catalyzed membrane. Bioresour Technol 210:43–48CrossRefGoogle Scholar
  30. 30.
    Dai C-A, Chang C-J, Kao A-C, Tsai W-B, Chen W-S, Liu W-M, Shih W-P, Ma C-C (2009) Polymer actuator based on PVA/PAMPS ionic membrane: optimization of ionic transport properties. Sens Actuators A Phys 155:152–162CrossRefGoogle Scholar
  31. 31.
    Gohil JM, Bhattacharya A, Ray P (2006) Studies on the cross-linking of poly(vinyl alcohol). J Polym Res 13:161–169CrossRefGoogle Scholar
  32. 32.
    Aggour YA (1994) Synthesis and characterization of copolymers of 2-(dimethylamino) ethyl acrylate with 2-acrylamido-2-methylpropanesulphonic acid. Polym Degrad Stab 45:273–276CrossRefGoogle Scholar
  33. 33.
    Rogozinsky M, Kramer M (1972) Determination of the gel content of vinyl chloride polymers and copolymers. J Polym Sci Polym Chem 10:3111–3112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zazil Corzo-González
    • 1
    • 2
  • Maria Isabel Loria-Bastarrachea
    • 2
  • Emmanuel Hernández-Nuñez
    • 3
  • Manuel Aguilar-Vega
    • 2
    Email author
  • Maria Ortencia González-Díaz
    • 4
    Email author
  1. 1.Universidad Politécnica de ChiapasTuxtla GutiérrezMexico
  2. 2.Laboratorio de membranasUnidad de Materiales, Centro de Investigación Científica de Yucatán, A.C.MéridaMexico
  3. 3.CONACYT-Centro de Investigación y de Estudios Avanzados del IPN, Unidad MéridaMéridaMexico
  4. 4.CONACYT - Centro de Investigación Científica de Yucatán, A. C.MéridaMéxico

Personalised recommendations