Skip to main content

Advertisement

Log in

Production, characterization, and surface morphology of novel aromatic poly(amide-ester-imide)/functionalized TiO2 nanocomposites via ultrasonication assisted process

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

New aromatic poly(amide-ester-imide) (PAEI) was prepared by phase transfer-catalyzed interfacial polycondensation of N,N′-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)bis(4 hydroxybenzamide) diol, with isophthaloyl chloride. The resulting PAEI was characterized by inherent viscosity measurements, solubility test, Fourier transform infrared (FT-IR), and 1H-NMR spectroscopy. Then, the PAEI was used as a polymer matrix for the preparation of PEAI/modified TiO2 nanocomposite (NC). In order to improve the dispersion of TiO2 nanoparticles in the polymer matrix, the surface of TiO2 nanoparticles was modified with N,N′-(pyromellitoyl)-bis-l-isoleucine diacid (DA). The obtained PAEI/DA-TiO2 NCs were characterized by FT-IR spectra, X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Morphology study demonstrated that DA-TiO2 nanoparticles were dispersed homogeneously in the polymer matrix. The thermogravimetric analysis indicated an enhancement of the thermal stability of the NCs via increasing nanoparticles contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeon I-Y, Baek J-B (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3(6):3654

    Article  CAS  Google Scholar 

  2. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  3. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170(2–3):381–394

    Article  CAS  Google Scholar 

  4. Chuayjuljit S, Sukasem N, Boonmahitthisud A (2013) Effects of silica, poly(methyl methacrylate) and poly(methyl methacrylate)-grafted-silica nanoparticles on the physical properties of plasticized-poly(vinyl chloride). Polym Plast Technol Eng 53(2):116–122

    Article  Google Scholar 

  5. Mallakpour S, Barati A (2013) Optically active poly(amide-imide)/TiO2 bionanocomposites containing l-isoleucine amino acid moieties: synthesis, nanostructure and properties. Polym Plast Technol Eng 52(10):997–1006

    Article  CAS  Google Scholar 

  6. Mallakpour S, Khadem E (2015) Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog Polym Sci 51:74–93

    Article  CAS  Google Scholar 

  7. Buzarovska A (2013) PLA nanocomposites with functionalized TiO2 nanoparticles. Polym Plast Technol Eng 52(3):280–286

    Article  CAS  Google Scholar 

  8. Gradzik B, Fray ME, Wisniewska E (2011) Surface modification of TiO2 and SiO2 nanoparticles for application in polymeric nanocomposites. CHEMIK 65:621–626

    CAS  Google Scholar 

  9. Lin J, Chen H, Yuan Y, Ji Y (2011) Mechanochemically conjugated PMHS/nano-SiO2 hybrid and subsequent optimum grafting density study. Appl Surf Sci 257(21):9024–9032

    Article  CAS  Google Scholar 

  10. Mallakpour S, Madani M (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat 86:194–207

    Article  CAS  Google Scholar 

  11. Mallakpour S, Sadeghzadeh R (2015) A benign and simple strategy for surface modification of Al2O3 nanoparticles with citric acid and L(+)-ascorbic acid and its application for the preparation of novel poly(vinyl chloride) nanocomposite films. Adv Polym Technol. doi:10.1002/adv.21622

    Google Scholar 

  12. Byranvanda MM, Kharata AN, Fatholahib L, Beiranvandc ZM (2013) A review on synthesis of nano-TiO2 via different methods. J Nanostruct 3:1–9

    Google Scholar 

  13. Ambrósio JD, Morisco Balarim CV, de Carvalho GB (2014) Preparation, characterization, and mechanical/tribological properties of polyamide 11/titanium dioxide nanocomposites. Polym Compos 37:1415–1424

    Article  Google Scholar 

  14. Tripathi AK, Singh MK, Mathpal MC, Mishra SK, Agarwal A (2013) Study of structural transformation in TiO2 nanoparticles and its optical properties. J Alloy Compound 549:114–120

    Article  CAS  Google Scholar 

  15. Tsai WH, Cave NG, Boerio FJ (1992) Characterization of interfaces between pyromellitic dianhydride/2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane polyimides and silver and highly oriented pyrolytic graphite substrates using X-ray photoelectron spectroscopy. Langmuir 8(3):927–935

    Article  CAS  Google Scholar 

  16. Hsiao S-H, Chou Y-T (2014) Synthesis and electrochromic properties of aromatic polyimides bearing pendent triphenylamine units. Polymer 55(10):2411–2421

    Article  CAS  Google Scholar 

  17. Akbarian-Feizi L, Mehdipour-Ataei S, Yeganeh H (2013) Investigation on the preparation of new sulfonated polyimide fuel cell membranes in organic and ionic liquid media. Int J Polym Mater Polym Biomater 63(3):149–160

    Article  Google Scholar 

  18. Hsiao S-H, Liou G-S, Kung Y-C, Pan H-Y, Kuo C-H (2009) Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units. Eur Polym J 45(8):2234–2248

    Article  CAS  Google Scholar 

  19. Wilson D (1988) PMR-15 processing, properties and problems—a review. Brit Poly J 20(5):405–416

    Article  CAS  Google Scholar 

  20. Resewski C, Buchgraber W (2003) Mat-wiss u Werkstofftech 34(4):365–369

    Article  CAS  Google Scholar 

  21. Zhao JJ, Gong CL, Zhang SJ, Shao Y, Li YF (2010) Synthesis of a new pyridine-containing diamine and related polyimide. Chin Chem Lett 21(3):277–278

    Article  CAS  Google Scholar 

  22. Mallakpour S, Zadehnazari A (2012) Novel optically active poly(amide-thioester-imide)s containing l-α-amino acids and thiadiazol anticorrosion group: production and characterization. High Perform Polym 25(4):377–386

    Article  Google Scholar 

  23. Shao Y, Li Y, Zhao X, Ma T, Gong C, Yang F (2007) Synthesis and characterization of soluble polyimides derived from a novel unsymmetrical diamine monomer: 1,4-(2′,4″-diaminodiphenoxy)benzene. Eur Polym J 43(10):4389–4397

    Article  CAS  Google Scholar 

  24. Choi H, Chung IS, Hong K, Park CE, Kim SY (2008) Soluble polyimides from unsymmetrical diamine containing benzimidazole ring and trifluoromethyl pendent group. Polymer 49(11):2644–2649

    Article  CAS  Google Scholar 

  25. Mallakpour S, Khani M (2013) Investigating thermophysical properties of novel chiral nanostructured poly(amide-ester-imide)s containing different amino acids based on biological active N, N′-(pyromellitoyl)-bis-l-amino acids and diol. High Perform Polym 25(6):723–732

    Article  Google Scholar 

  26. Mallakpour S, Aalizadeh R (2013) A simple and convenient method for the surface coating of TiO2 nanoparticles with bioactive chiral diacids containing different amino acids as the coupling agent. Prog Org Coat 76(4):648–653

    Article  CAS  Google Scholar 

  27. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, New York

    Google Scholar 

  28. Cao T, Xu K, Chen G, Guo CY (2013) Poly(ethylene terephthalate) nanocomposites with a strong UV-shielding function using UV-absorber intercalated layered double hydroxides. RSC Adv 3:6282

    Article  CAS  Google Scholar 

  29. Saadat-Monfareda A, Mohsenia M, Hashemi Tabatabaeib M (2012) Polyurethane nanocomposite films containing nano-cerium oxide as UV absorber. Part 1. Static and dynamic light scattering, small angle neutron scattering and optical studies. Colloid Surf A: Physicochem Eng Aspects 408:64–70

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), for financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellence in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S. Production, characterization, and surface morphology of novel aromatic poly(amide-ester-imide)/functionalized TiO2 nanocomposites via ultrasonication assisted process. Polym. Bull. 74, 2465–2477 (2017). https://doi.org/10.1007/s00289-016-1844-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1844-7

Keywords

Navigation