Skip to main content
Log in

Using biodiesel as a green solvent in the polymerization reactions: the attempt to separate the biodiesel from the polymer by thermal treatment

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the products of the polymerization reaction of epoxidized methyl esters with phthalic anhydride catalyzed by 2-methyl-imidazole, in the presence of biodiesel as a green solvent, were evaluated. The presence of biodiesel enabled reaction at 180 °C during 40 min in a system with good thermal conductivity, homogeneous conditions, and products with physical aspect varying from rubber to high viscous liquid. The products include polyesters, with and without biodiesel, were characterized by: DSC—Differential Scanning Calorimetry, TGA—thermogravimetric analysis, and TGA/MS -TGA coupled to Mass Spectrometer, swelling tests, plane strain compression, and morphological analysis using scanning electronic microscopy (SEM). Considering that biodiesel presents a temperature degradation around 215 °C and the polyesters around 320 °C, a simple thermal treatment was introduced to separate the solvent biodiesel from the reaction products. This treatment includes heating until 250 °C and consequent cooling to the room temperature. The second heating, up to 500 °C, was used to prove, through TGA/MS, that the thermal treatment (heating until 250 °C) not affected the polyester matrix and is sufficient to remove biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Güner FS, Yağcı Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Article  Google Scholar 

  2. Sharma V, Kundu PP (2006) Addition polymers from natural oils—a review. Prog Polym Sci 31:983–1008

    Article  CAS  Google Scholar 

  3. Monteavaro LL, Da Silva EO, Costa APO, Samios D, Gerbase AE, Petzhold CL (2005) Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization. J Am Oil Chem Soc 82:365–371

    Article  CAS  Google Scholar 

  4. Sharmin E, Ashraf SM, Ahmad S (2007) Epoxidation, hydroxylation, acrylation and urethanation of Linum usitatissimum seed oil and its derivatives. Eur J Lipid Sci Technol 109:134–146

    Article  CAS  Google Scholar 

  5. Brasil MC, Gerbase AE, De Luca MA, Gregório JR (2007) Organic-inorganic hybrid films based on hydroxylated soybean oils. J Am Oil Chem Soc 84:289–295

    Article  CAS  Google Scholar 

  6. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    Article  CAS  Google Scholar 

  7. Akram D, Sharmin E, Ahmad S (2009) Synthesis and characterization of boron incorporated polyester polyol from linseed oil: a sustainable material. Macromol Symp 277:130–137

    Article  CAS  Google Scholar 

  8. de Luca MA, Martinelli M, Barbieri CCT (2009) Hybrid films synthesised from epoxidised castor oil, γ-glycidoxypropyltrimethoxysilane and tetraethoxysilane. Prog Org Coat 65:375–380

    Article  Google Scholar 

  9. Lopes RDVV, Zamian JR, Resck IS, Sales MJA, Dos Santos ML, Da Cunha FR (2010) Physicochemical and rheological properties of passion fruit oil and its polyol. Eur J Lipid Sci Technol 112:1253–1262

    Article  CAS  Google Scholar 

  10. Lligadas G, Ronda JC, Galiá M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835

    Article  CAS  Google Scholar 

  11. Veronese VB, Menger RK, Forte MMDC, Petzhold CL (2011) Rigid polyurethane foam based on modified vegetable oil. J Appl Polym Sci 120:530–537

    Article  CAS  Google Scholar 

  12. Sharmin E, Akram D, Zafar F, Ashraf SM, Ahmad S (2011) Plant oil polyol based poly (ester urethane) metallohybrid coatings. Prog Org Coat 73:118–122

    Article  Google Scholar 

  13. Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4:703–717

    Article  CAS  Google Scholar 

  14. Grishchuk S, Karger-Kocsis J (2011) Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polym Lett 5:2–11

    Article  CAS  Google Scholar 

  15. Altuna FI, Espósito LH, Ruseckaite RA, Stefani PM (2011) Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. J Appl Polym Sci 120:789–798

    Article  CAS  Google Scholar 

  16. Manthey NW, Cardona F, Aravinthan T, Cooney T (2011) Cure kinetics of an epoxidized hemp oil based bioresin system. J Appl Polym Sci 122:445–451

    Article  Google Scholar 

  17. Wool RP, Sun XS (2005) Bio-Based Polymers and Composites, 1st ed. Elsevier Academic Press, San Diego, California

    Google Scholar 

  18. Sharma V, Kundu PP (2008) Condensation polymers from natural oils. Prog Polym Sci 33:1199–1215

    Article  CAS  Google Scholar 

  19. Martini DS, Braga BA, Samios D (2009) On the curing of linseed oil epoxidized methyl esters with different cyclic dicarboxylic anhydrides. Polymer 50:2919–2925

    Article  CAS  Google Scholar 

  20. Reiznautt QB, Garcia ITS, Samios D (2009) Oligoesters and polyesters produced by the curing of sunflower oil epoxidized biodiesel with cis-cyclohexane dicarboxylic anhydride: synthesis and characterization. Mater Sci Eng C 29:2302–2311

    Article  CAS  Google Scholar 

  21. Nicolau A, Mariath RM, Samios D (2009) Study of the properties of polymers obtained from vegetable oil derivatives by light scattering techniques. Mater Sci Eng C 29:452–457

    Article  CAS  Google Scholar 

  22. Nicolau A, Mariath RM, Martini EA, Martini DS, Samios D (2010) The polymerization products of epoxidized oleic acid and epoxidized methyl oleate with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine as the initiator: chemical structures, thermal and electrical properties. Mater Sci Eng C 30:951–962

    Article  CAS  Google Scholar 

  23. Bunker SP, Wool RP (2002) Synthesis and characterization of monomers and polymers for adhesives from methyl oleate. J Polym Sci Part A Polym Chem 40:451–458

    Article  CAS  Google Scholar 

  24. Salehpour S, Dubé MA (2008) Biodiesel: a green polymerization solvent. Green Chem 10:321–326

    Article  CAS  Google Scholar 

  25. Salehpour S, Dubé MA (2008) The use of biodiesel as a green polymerization solvent at elevated temperatures. Polym Int 57:854–862

    Article  CAS  Google Scholar 

  26. Salehpour S, Dubé MA, Murphy M (2009) Solution polymerization of styrene using biodiesel as a solvent: effect of biodiesel feedstock. Can J Chem Eng 87:129–135

    Article  CAS  Google Scholar 

  27. Hu J, Du Z, Tang Z, Min E (2004) Study on the solvent power of a new green solvent: biodiesel. Ind Eng Chem Res 43:7928–7931

    Article  CAS  Google Scholar 

  28. Adeyemi NA, Mohiuddin AKM, Jameel AT (2011) Biodiesel production: a mini review. Int Energ J 12:15–28

    Google Scholar 

  29. Pramanika P, Dasa P, Kim PJ (2012) Preparation of biofuel from argemone seed oil by an alternative cost-effective technique. Fuel 91:81–86

    Article  Google Scholar 

  30. Guzatto R, Defferrari D, Reiznautt QB, Cadore IR, Samios D (2012) Transesterification double step process modification for ethyl ester biodiesel production from vegetable and waste oils. Fuel 92:197–203

    Article  CAS  Google Scholar 

  31. Ahmad M, Samuel S, Zafar M, Khan MA, Tariq M, Ali S, Sultana S (2011) Physicochemical characterization of eco-friendly rice bran oil biodiesel. Energ Source A 33:1386–1397

    Article  CAS  Google Scholar 

  32. Miyake Y, Yokomizo K, Matsuzaki N (1998) Rapid determination of iodine value by 1H nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 75:15–19

    Article  CAS  Google Scholar 

  33. Samios D, Pedrotti F, Nicolau A, Reiznautt QB, Martini DD, Dalcin FM (2009) A transesterification double step process—TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Process Technol 90:599–605

    Article  CAS  Google Scholar 

  34. Guzatto R, de Martini TL, Samios D (2011) The use of a modified TDSP for biodiesel production from soybean, linseed and waste cooking oil. Fuel Process Technol 92:2083–2088

    Article  CAS  Google Scholar 

  35. Campanella A, Fontanini C, Baltanás MA (2008) High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem Eng J 144:466–475

    Article  CAS  Google Scholar 

  36. Rubio M, Ramírez-Galicia G, López-Nava LJ (2005) Mechanism formation of peracids. J Mol Struct THEOCHEM 726:261–269

    Article  CAS  Google Scholar 

  37. da Roza MB, Nicolau A, Angeloni LM, Sidou PN, Samios D (2012) Thermodynamic and kinetic evaluation of the polymerization process of epoxidized biodiesel with dicarboxylic anhydride. Mol Phys. doi:10.1080/00268976.2011.647717

    Google Scholar 

  38. Guzatto R, da Roza MB, Denardin ELG, Samios D (2009) Dynamical, morphological and mechanical properties of poly(ethylene terephthalate) deformed by plane strain compression. Polym Test 28:24–29

    Article  CAS  Google Scholar 

  39. Samios D, Tokumoto S, Denardin ELG (2006) Investigation of the large plastic deformation of iPP induced by plane strain compression: stress-strain behavior and thermo-mechanical properties. Int J Plast 22:1924–1942

    Article  CAS  Google Scholar 

  40. Das G, Karak N (2009) Vegetable oil-based flame retardant epoxy/clay nanocomposites. Polym Degrad Stabil 94:1948–1954

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for FINEP, CNPq, and CAPES financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Samios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Roza Costa, M.B., Nicolau, A., Guzatto, R. et al. Using biodiesel as a green solvent in the polymerization reactions: the attempt to separate the biodiesel from the polymer by thermal treatment. Polym. Bull. 74, 2365–2378 (2017). https://doi.org/10.1007/s00289-016-1842-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1842-9

Keywords

Navigation