Polymer Bulletin

, Volume 74, Issue 6, pp 2297–2318 | Cite as

Long-chain branched polypropylene obtained using an epoxy resin as crosslinking agent

  • Jorge Guapacha
  • Enrique M. Vallés
  • Lidia M. QuinzaniEmail author
  • Marcelo D. Failla
Original Paper


A reaction between a linear polypropylene functionalized with maleic anhydride (PPg) and epoxy resin (bisphenol A diglycidyl ether) was carried out on the molten state to generate long-chain branches (LCB) in the molecular structure of the PPg. Concentrations of epoxy resin (ER) of up to 3.15 wt% were employed to obtain different levels of branching. FTIR spectroscopy analysis indicates that during the reaction, anhydride groups in PPg are consumed and new ester groups are formed. The presence of branches was verified using multiple-detection size-exclusion chromatography and rheology. The degree of long-chain branching induced in PPg augments with increasing concentration of ER. Furthermore, the materials modified with higher content of ER display gel-like behavior. The long-chain branched polymers also display thermo-rheological complexity. Thermal characterization studies show that LCBs have a nucleating effect during crystallization and cause the augment of the crystallization activation energy of PPg.


Polypropylene Crosslinking Structure–property relations Rheology Calorimetry 



The authors are grateful for the financial support given by the National Research Council of Argentina (CONICET), the Universidad Nacional del Sur (UNS), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and the CYTED Project 311RT0417.


  1. 1.
    Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944CrossRefGoogle Scholar
  2. 2.
    Han CD (2007) Rheology and Processing of Polymeric Materials, Polymer Rheology, vol 1. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Utracki LA (2002) Polymer blends handbook, vol 1. Kluwer Academic Publisher, BerlinGoogle Scholar
  4. 4.
    Lu B, Chung TC (1999) Synthesis of long chain branched polypropylene with relatively well-defined molecular structure. Macromolecules 32:8678–8680. doi: 10.1021/ma991010r CrossRefGoogle Scholar
  5. 5.
    Sugimoto M, Tanaka T, Masubuchi Y, Takimoto JI, Koyama K (1999) Effect of chain structure on the melt rheology of modified polypropylene. J Appl Polym Sci 73:1493–1500. doi: 10.1002/(SICI)1097-4628(19990822)73:8<1493:AID-APP18>3.0.CO;2-2 CrossRefGoogle Scholar
  6. 6.
    Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD (2001) Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 42:10035–10043. doi: 10.1016/S0032-3861(01)00553-5 CrossRefGoogle Scholar
  7. 7.
    Rätzsch M, Arnold M, Borsig E, Ra M, Bucka H, Reichelt N (2002) Radical reactions on polypropylene in the solid state. Prog Polym 27:1195–1282. doi: 10.1016/S0079-6700(02)00006-0 CrossRefGoogle Scholar
  8. 8.
    Graebling D (2002) Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules 35:4602–4610. doi: 10.1021/ma0109469 CrossRefGoogle Scholar
  9. 9.
    Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472. doi: 10.1021/ma030579w CrossRefGoogle Scholar
  10. 10.
    Auhl D, Stadler FJ, Münstedt H (2012) Comparison of molecular structure and rheological properties of electron-beam- and gamma-irradiated polypropylene. Macromolecules 45:2057–2065. doi: 10.1021/ma202265w CrossRefGoogle Scholar
  11. 11.
    Gotsis AD, Zeevenhoven BLF, Hogt AH (2004) The effect of long chain branching on the processability of polypropylene in thermoforming. Polym Eng Sci 44:973–982. doi: 10.1002/pen.20089 CrossRefGoogle Scholar
  12. 12.
    Paavola S, Saarinen T, Löfgren B, Pitkänen P (2004) Propylene copolymerization with non-conjugated dienes and α-olefins using supported metallocene catalyst. Polymer 45:2099–2110. doi: 10.1016/j.polymer.2004.01.053 CrossRefGoogle Scholar
  13. 13.
    Ye Z, AlObaidi F, Zhu S (2004) Synthesis and rheological properties of long-chain-branched isotactic polypropylenes prepared by copolymerization of propylene and nonconjugated dienes. Ind Eng Chem Res 43:2860–2870. doi: 10.1021/ie0499660 CrossRefGoogle Scholar
  14. 14.
    Nam GJ, Yoo JH, Lee JW (2005) Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. J Appl Polym Sci 96:1793–1800. doi: 10.1002/app.21619 CrossRefGoogle Scholar
  15. 15.
    Krause B, Voigt D, Häußler L, Auhl D, Münstedt H (2006) Characterization of electron beam irradiated polypropylene: influence of irradiation temperature on molecular and rheological properties. J Appl Polym Sci 100:2770–2780. doi: 10.1002/app.23453 CrossRefGoogle Scholar
  16. 16.
    Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969. doi: 10.1016/j.polymer.2006.09.042 CrossRefGoogle Scholar
  17. 17.
    Langston JA, Colby RH, Chung TCM, Shimizu F, Suzuki T, Aoki M (2007) Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and t-reagent. Macromolecules 40:2712–2720. doi: 10.1021/ma062111+ CrossRefGoogle Scholar
  18. 18.
    Fina A, Tabuani D, Peijs T, Camino G (2009) POSS grafting on PPgMA by one-step reactive blending. Polymer 50:218–226. doi: 10.1016/j.polymer.2008.11.002 CrossRefGoogle Scholar
  19. 19.
    Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A (2009) The Melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128. doi: 10.1016/j.polymer.2009.10.006 CrossRefGoogle Scholar
  20. 20.
    Mabrouk KE, Parent JS, Chaudhary BI, Cong R (2009) Chemical modification of PP architecture: strategies for introducing long-chain branching. Polymer 50:5390–5397. doi: 10.1016/j.polymer.2009.09.066 CrossRefGoogle Scholar
  21. 21.
    Su F, Huang H (2009) Rheology and thermal behavior of long branching polypropylene prepared by reactive extrusion. J Appl Polym Sci 113:2126–2135. doi: 10.1002/app.30061 CrossRefGoogle Scholar
  22. 22.
    Guapacha J, Failla MD, Vallés EM, Quinzani LM (2014) Molecular, rheological, and thermal study of long-chain branched polypropylene obtained by esterification of anhydride grafted polypropylene. J Appl Polym Sci 131:40357. doi: 10.1002/app.40357 CrossRefGoogle Scholar
  23. 23.
    Hingmann R, Marczinke BL (1994) Shear and elongational flow properties of polypropylene melts. J Rheol 38:573–587. doi: 10.1122/1.550475 CrossRefGoogle Scholar
  24. 24.
    Zhang C, Niu H, Dong JY (2012) Fabrication of long chain branched polypropylene using click chemistry. Polym Bull 68:949–959. doi: 10.1007/s00289-011-0588-7 CrossRefGoogle Scholar
  25. 25.
    Yoshiga A, Otaguro H, Parra DF, Lima LFCP, Lugao AB (2009) Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene. Polym Bull 63:397–409. doi: 10.1007/s00289-009-0102-7 CrossRefGoogle Scholar
  26. 26.
    Oliani WL, Parra DF, Lima LFCP, Lugao AB (2012) Morphological characterization of branched PP under stretching. Polym Bull 68:2121–2130. doi: 10.1007/s00289-012-0708-z CrossRefGoogle Scholar
  27. 27.
    Zhang W, Yang L, Chen P, Zhang H, Lin W, Wang Y (2013) Preparation of long-chain branching polypropylene and investigation on its foamability. Polym Eng Sci 53:1598–1604. doi: 10.1002/pen.23416 CrossRefGoogle Scholar
  28. 28.
    Tang H, Dai W, Chen B (2008) A new method for producing high melt strength polypropylene with reactive extrusion. Polym Eng Sci 48:1339–1344. doi: 10.1002/pen.21105 CrossRefGoogle Scholar
  29. 29.
    Chaudhary BI, Cong R, Parent JS (2011) Imide-coupled propylene-based polymer and process. Patent US 2011/0009513 A1Google Scholar
  30. 30.
    Ashcroft WR (1993) Curing agents for epoxy resins. Chemistry and Technology of Epoxy Resins. Springer, The Netherlands, pp 37–71CrossRefGoogle Scholar
  31. 31.
    Silverstein R, Webster F (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Scholte TG, Meijerink NLJ, Schoffeleers HM, Brands AMG (1984) Mark-Houwink equation and GPC calibration linear short-chain branched polyolefins, including polypropylene and ethylene-propylene copolymers. J Appl Polym Sci 29:3763–3782. doi: 10.1002/app.1984.070291211 CrossRefGoogle Scholar
  33. 33.
    Zimm BH, StocKmayers WH (1949) The dimensions of chain molecules containing branches and rings. Chem Phys 17:1301–1314. doi: 10.1063/1.1747157 Google Scholar
  34. 34.
    Zimm BH, Kilb RW (1959) Dynamics of branched polymer molecules in dilute solution. J Polym Sci 37:19–42. doi: 10.1002/pol.1959.1203713102 CrossRefGoogle Scholar
  35. 35.
    Lecacheux D, Lesec J, Quivoron C (1982) High-temperature coupling of high-speed GPC with continuous viscometry. I. Long-chain branching in polyethylene. J Appl Polym Sci 27:4867–4877. doi: 10.1002/app.1982.070271231 CrossRefGoogle Scholar
  36. 36.
    Berry GCJ (1971) Thermodynamic and conformational properties of polystyrene. III dilute solution studies on branched polymers. J Polym Sci Part A-2 9:687–715CrossRefGoogle Scholar
  37. 37.
    Roovers J, Toporowski P, Martin J (1989) synthesis and characterization of multiarm star polybutadienes. Macromolecules 22:1897–1903. doi: 10.1021/ma00194a064 CrossRefGoogle Scholar
  38. 38.
    Wood-Adams P, Dealy JM, de Willem Groot A, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499. doi: 10.1021/ma991533z CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Wan D, Xing H, Tan H, Wang L, Zheng J, An Y, Tang T (2012) A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer 53:121–129. doi: 10.1016/j.polymer.2011.11.033 CrossRefGoogle Scholar
  40. 40.
    Li Y, Yao Z, Chen Z, Qiu S, Zeng C, Cao K (2013) Rheological evidence of physical cross-links and their impact in modified polypropylene. Ind Eng Chem Res 52:7758–7767. doi: 10.1021/ie400809z CrossRefGoogle Scholar
  41. 41.
    Vega JF, Expósito MT, Martínez-Salazar J, Lobón-Poo M, Osío Barcina J, García Martínez A, López M (2011) Molecular architecture and linear viscoelasticity of homogeneous ethylene/styrene copolymers. Rheol Acta 50:207–220. doi: 10.1007/s00397-010-0521-2 CrossRefGoogle Scholar
  42. 42.
    Villar MA, Failla MD, Quijada R, Santos Mauler R, Vallés E, Barrera Galland G, Quinzani LM (2001) Rheological characterization of molten ethylene-alfa-olefin copolymers synthesized with Et [Ind] 2 ZrCl 2/MAO catalyst. Polymer 42:9269–9279. doi: 10.1016/S0032-3861(01)00458-X CrossRefGoogle Scholar
  43. 43.
    Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290. doi: 10.1021/ma0017034 CrossRefGoogle Scholar
  44. 44.
    Keßner U, Münstedt H (2010) Thermorheology as a method to analyze long-chain branched polyethylenes. Polymer 51:507–513. doi: 10.1016/j.polymer.2009.11.005 CrossRefGoogle Scholar
  45. 45.
    Tian J, Yu W, Zhou C (2007) Crystallization behaviors of linear and long chain branched polypropylene. J Appl Polym Sci 104:3592–3600. doi: 10.1080/00222340600870507 CrossRefGoogle Scholar
  46. 46.
    Seo Y, Kim J, Ung K, Chul Y (2000) Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer 41:2639–2646. doi: 10.1016/S0032-3861(99)00425-5 CrossRefGoogle Scholar
  47. 47.
    Kang J, Wang B, Peng H, Chen J, Cao Y, Li H, Yang F, Xiang M (2014) Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym Bull 71:563–579. doi: 10.1007/s00289-013-1077-y CrossRefGoogle Scholar
  48. 48.
    Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775. doi: 10.1002/1521-3927(20020901)23:13<771:AID-MARC771>3.0.CO;2-G CrossRefGoogle Scholar
  49. 49.
    Yang B, Yang M, Wang WJ, Zhu S (2012) Effect of long chain branching on nonisothermal crystallization behavior of polyethylenes synthesized with constrained geometry catalyst. Polym Eng Sci 52:21–34. doi: 10.1002/pen.22040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jorge Guapacha
    • 1
  • Enrique M. Vallés
    • 1
  • Lidia M. Quinzani
    • 1
    Email author
  • Marcelo D. Failla
    • 1
    • 2
  1. 1.Planta Piloto de Ingeniería Química (PLAPIQUI)Bahía BlancaArgentina
  2. 2.Departamento de IngenieríaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina

Personalised recommendations