Skip to main content

Synthesis and properties of castor oil based polyurethanes reinforced with double-decker silsesquioxane

Abstract

Hybrid polyurethanes with double-decker silsesquioxane (DDSQ) in the main chains were synthesized using castor oil and isophorone diisocyanate (IPDI) as feedstock. Double-decker octaphenylsilsesquioxanetetraol (DDSQ) was prepared and characterized by 1H NMR and MALDI-TOF–MS. Meanwhile, FTIR, TGA, DSC, SEM, UV–Vis spectrophotometer, tensile test techniques and static contact angle were also carried out to investigate the structures and properties of the hybrid polyurethanes. The DDSQ-containing hybrid polyurethanes exhibited improved thermal stability in terms of thermogravimetric analysis (TGA). DSC analysis demonstrated that the hybrid polyurethanes with DDSQ displayed enhanced glass transition temperature. According to the results of SEM and UV–Vis spectrophotometer, the aggregates of DDSQ were dispersed homogeneously in the hybrid polyurethanes matrix. With the inclusion of DDSQ, the hydrophobicity of the hybrid material was significantly improved as the results of the static contact angles revealed.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Wu S, Kakimoto M, Oikawa H (2008) Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules 41:3481–3487

    CAS  Article  Google Scholar 

  2. 2.

    Wei S, Changb FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    Article  Google Scholar 

  3. 3.

    Tamaki R, Choi J, Laine RM (2001) Octa (aminophenyl) silsesquioxane as a nanoconstruction Site. J Am Chem Soc 123:12416–12417

    CAS  Article  Google Scholar 

  4. 4.

    Ak M, Gacal B, Kiskan B, Yagci Y, Toppare L (2008) Enhancing electrochromic properties of polypyrrole by silsesquioxane nanocages. Polymer 49:2202–2210

    CAS  Article  Google Scholar 

  5. 5.

    Neumann D, Tran L, Matisons JG (2002) Synthesis and characterization of an isocyanate functionalized polyhedra oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane. J Am Chem Soc 124:13998–13999

    CAS  Article  Google Scholar 

  6. 6.

    Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109

    CAS  Article  Google Scholar 

  7. 7.

    Cai H, Xu K, Liu X, Fua Z, Chen M (2012) A facile synthesis of octa (carboxyphenyl) silsesquioxane. Dalton Trans 41:6919–6921

    CAS  Article  Google Scholar 

  8. 8.

    Xu H, Guang S, Li C (2007) Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. J Polym Sci Part A Polym Chem 45:5308–5317

    CAS  Article  Google Scholar 

  9. 9.

    Gnanasekaran D, Walter PA, Reddy BS (2013) Influence of moieties on morphology, thermal, and dielectric properties in polyamide-polyhedral oligomeric silsesquioxanes nanocomposites. Polym Eng Sci 53:1637–1644

    CAS  Article  Google Scholar 

  10. 10.

    Wu K, Kandola BK, Kandare E, Hu Y (2011) Flame retardant effect of polyhedral oligomeric silsesquioxane and triglycidyl isocyanurate on glass fibre-reinforced epoxy composites. Polym Compos 32:378–389

    CAS  Article  Google Scholar 

  11. 11.

    Wei K, Wang L, Zheng S (2013) Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym Chem 4:1491–1501

    CAS  Article  Google Scholar 

  12. 12.

    Bourbigot S, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237

    CAS  Article  Google Scholar 

  13. 13.

    Leu CM, Chang YT, Wei KH (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15:3721–3727

    CAS  Article  Google Scholar 

  14. 14.

    Abdul M, He C (2008) Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. J Polym Sci Part A Polym Chem 46:5887–5896

    Article  Google Scholar 

  15. 15.

    Ye Y, Chen W (2008) A simple approach toward low-dielectric polyimide nanocomposites: blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane. J Polym Sci Part A Polym Chem 46:6296–6304

    CAS  Article  Google Scholar 

  16. 16.

    Musto P, Pannico M, Scarinzi G, Ragosta G (2012) Improving the photo-oxidative stability of epoxy resins by use of functional POSS additives: A spectroscopic, mechanical and morphological study. Polymer 53:5016–5036

    CAS  Article  Google Scholar 

  17. 17.

    Huang JC, He CB, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499

    CAS  Article  Google Scholar 

  18. 18.

    Liu H, Zheng S (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 26:196–200

    Article  Google Scholar 

  19. 19.

    Liu Y, Ni Y, Zheng S (2006) Polyurethane networks modified with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromol Chem Phys 207:1842–1850

    CAS  Article  Google Scholar 

  20. 20.

    Costa ROR, Tamaki R, Laine RM (2001) Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 34:5398–5407

    CAS  Article  Google Scholar 

  21. 21.

    Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557–5568

    CAS  Article  Google Scholar 

  22. 22.

    Laine RM, Choi J, Lee I (2001) Organic–inorganic nanocomposites with completely defined interfacial interactions. Adv Mater 13:800–803

    CAS  Article  Google Scholar 

  23. 23.

    Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes epoxy resins of octa (dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36:5666–5682

    CAS  Article  Google Scholar 

  24. 24.

    Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15:3365–3375

    CAS  Article  Google Scholar 

  25. 25.

    Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: a three-component hybrid system. Macromolecules 37:3267–3276

    CAS  Article  Google Scholar 

  26. 26.

    Liu Y, Zheng S, Nie K (2005) Epoxy nanocomposites with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer 46:12016–12025

    CAS  Article  Google Scholar 

  27. 27.

    Zeng K, Liu Y, Zheng S (2008) Poly(ethylene imine) hybrids containing polyhedral oligomeric silsesquioxanes: Preparation, structure and properties. Eur Polym J 44:3946–3956

    CAS  Article  Google Scholar 

  28. 28.

    Liu Y, Zheng S (2006) Inorganic–organic nanocomposites of polybenzoxazine with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. J Polym Sci Part A Polym Chem 44:1168–1181

    CAS  Article  Google Scholar 

  29. 29.

    Huang KW, Kuo SW (2010) High-Performance Polybenzoxazine Nanocomposites Containing Multifunctional POSS Cores Presenting Vinyl-Terminated Benzoxazine Groups. Macromol Chem Phys 211:2301–2311

    CAS  Article  Google Scholar 

  30. 30.

    Wu S, Kakimoto MA, Oikawa H (2007) Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules 40:5698–5705

    CAS  Article  Google Scholar 

  31. 31.

    Yoshida K, Watanabe K, Ootake N (2004) US Pat Application 20040249103A1

  32. 32.

    Kato T, Yoshida K, Yamamoto Y (2006) Jpn Kokai Tokkyo Koho 2006265243A

  33. 33.

    Hoque MA, Shinke S, Kawakami Y (2009) Polysiloxanes with periodically distributed isomeric double-decker silsesquioxane in the main chain. Macromolecules 42:3309–3315

    CAS  Article  Google Scholar 

  34. 34.

    Huang J, Jiang P (2016) Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J Mater Sci 51:2443–2452

    CAS  Article  Google Scholar 

  35. 35.

    Hu S, Li Y (2014) Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities. Ind Crops Prod 57:188–194

    CAS  Article  Google Scholar 

  36. 36.

    Baldi F, Bignotti F, Ricco L, Monticelli O, Ricco T (2006) Mechanical and structural characterization of POSS modified polyamide. J Appl Polym Sci 100:3409–3414

    CAS  Article  Google Scholar 

  37. 37.

    Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10

    CAS  Article  Google Scholar 

  38. 38.

    Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    CAS  Article  Google Scholar 

  39. 39.

    Hu YH, Gao Y, Wang DN (2002) Rigid polyurethane foam prepared from a rape seed oil based polyol. J Appl Polym Sci 84:591–597

    CAS  Article  Google Scholar 

  40. 40.

    Li ZQ, Yang RJ (2014) Synthesis, characterization, and properties of a polyhedral oligomeric octadiphenylsulfonylsilsesquioxane. J Appl Sci 131:40892

    Google Scholar 

  41. 41.

    Petrovic ZS, Zlatanic A, Zhang W (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci 105:2717–2727

    CAS  Article  Google Scholar 

  42. 42.

    Yadav S, Zafar F, Hasnat A, Ahmad SM (2009) Poly (urethane fatty amide) resin from linseed oil-A renewable resource. Prog Org Coat 64:27–32

    CAS  Article  Google Scholar 

  43. 43.

    Badri KH, Ahmad SH (2001) Production of a high-functionality RBD palm kernel oil-based polyester polyol. J Appl Polym Sci 81:384–389

    CAS  Article  Google Scholar 

  44. 44.

    Thakur S, Karak N (2013) Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog Org Coat 76:157–164

    CAS  Article  Google Scholar 

  45. 45.

    Raftopoulos KN, Pissis P, Pielichowski K (2013) Direct and indirect effects of POSS on the molecular mobility of polyurethanes with varying segment Mw. Polymer 54:2745–2754

    CAS  Article  Google Scholar 

  46. 46.

    Rattinger EH, Ishida K, Uribe AR, Mather PT (2013) Thermally modulated nanostructure of poly(ε-caprolactone)-POSS multiblock thermoplastic polyurethanes. Polymer 54:3350–3362

    Article  Google Scholar 

  47. 47.

    Turri S, Levi M (2005) Structure, dynamic properties, and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomeric silsesquioxanes. Macromolecules 38:5569–5574

    CAS  Article  Google Scholar 

  48. 48.

    Knight PT, Qin H, Mather PT (2008) Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. Biomacromolecules 9:2458–2467

    CAS  Article  Google Scholar 

  49. 49.

    Janowski B, Pielichowski K (2008) Thermo (oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim Acta 478:51–53

    CAS  Article  Google Scholar 

  50. 50.

    Zhang C, Xia Y, Chen R, Huh S (2013) Soy-castor oil based polyols prepared using a solvent-free and catalyst-free method and polyurethanes therefrom. Green Chem 15:1477–1484

    CAS  Article  Google Scholar 

  51. 51.

    Lu YS, Larock RC (2007) New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacromolecules 8:3108–3114

    CAS  Article  Google Scholar 

  52. 52.

    Xia Y, Larock RC (2010) Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51:2508–2514

    CAS  Article  Google Scholar 

  53. 53.

    Auvergne R, Boutevin B (2012) Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur J Lipid Sci Technol 114:1447–1459

    Article  Google Scholar 

  54. 54.

    Morent R, Beaurain A, Dubruel P, Payen E (2011) Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Prog Org Coat 70:336–341

    CAS  Article  Google Scholar 

  55. 55.

    Datta J, Glowinska E (2014) Chemical modifications of natural oils and examples of their usage for polyurethane synthesis. J Elastom Plast 46(1):33–42

    Article  Google Scholar 

  56. 56.

    Datta J, Glowinska E (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Ind Crop Prod 61:84–91

    CAS  Article  Google Scholar 

  57. 57.

    Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 2007(19):2736–2751

    Article  Google Scholar 

  58. 58.

    Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    CAS  Article  Google Scholar 

  59. 59.

    Wang W, Guo Y, Otaigbe JU (2009) The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silsesquioxane nanocomposites. Polymer 50:5749–5757

    CAS  Article  Google Scholar 

  60. 60.

    Strachota A, Kovárová J, Matějka L (2004) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical Properties. Macromolecules 37:9457–9464

    CAS  Article  Google Scholar 

  61. 61.

    Datta J, Leszkowski K (2008) Investigation of chemical stability of ether-urethane prepolymers. Polymer 53:115–119

    CAS  Google Scholar 

  62. 62.

    Datta J (2012) Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. J Therm Anal Calorim 109:517–520

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research Grants from the Fundamental Research Funds for the Central Universities (JUSRP51623A) and the Cooperative Innovation Foundation of Industry, Academy and Research Institutes (BY2013015-10) in Jiangsu Province of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pingping Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Jiang, P., Wen, Y. et al. Synthesis and properties of castor oil based polyurethanes reinforced with double-decker silsesquioxane. Polym. Bull. 74, 2767–2785 (2017). https://doi.org/10.1007/s00289-016-1838-5

Download citation

Keywords

  • Castor oil
  • Polyol
  • Hybrid polyurethane
  • Double-decker silsesquioxane