Skip to main content

Study on physicochemical properties of poly(ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly(butylene succinate) as soft segments

Abstract

Novel biodegradable polyester-based polyurethanes were developed based on poly(ε-caprolactone) diol (PCL diol) and poly(butylene succinate) diol (PBS diol) as the biodegradable soft segments (SS), and diisocyanate and 1,4-butanediol (BDO) as the hard segment (HS). The PBS diol (\( \overline{{M_{\text{n}} }} \) = 2000 g/mol) was successfully synthesized by melt condensation. The PBS diol and polyurethane sheets were characterized for chemical structure using NMR and FTIR techniques. The effect of hard segments and diisocyanate type on thermo-mechanical properties and hydrolytic degradation were examined by means of tensile testing, TGA, DSC and DMTA. The stress–strain curves of PURs reached the high 715 % elongation at break, 32.5 MPa tensile strength, and 123.8 MPa Young’s modulus. Increased hard segment content increased the tensile properties, thermal resistance and T g, but the hydrolytic degradation rate decreased. The IPDI-based polyurethane gave lower tensile properties, T g and hydrolytic degradation rate, but higher thermal stability than the TDI-based polyurethane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Tokiwa Y, Clabia BP, Ugwu CU, Aiba S (2009) Review biodegradability of plastic. Int J Mol Sci. doi:10.3390/ijms10093722

    Google Scholar 

  2. 2.

    Chiellini E, Solaro R (2003) Biodegradable polymer and plastics. New York, USA

  3. 3.

    Platt DK (2006) Biodegradable polymers: market report. Shropshire, UK

  4. 4.

    Smith R (2005) Biodegradable polymers for industrial applications. Cambridge, UK

  5. 5.

    Bastioli C (2014) Handbook of biodegradable polymers, 2nd edn. Shropshire, UK

    Google Scholar 

  6. 6.

    Woodruf MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256. doi:10.1016/j.progpolymsci.2010.04.002

    Article  Google Scholar 

  7. 7.

    Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, Li GY (2011) Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. E-Xpress Polym Lett 5(8):742–752. doi:10.3144/expresspolymlett.2011.72

    CAS  Article  Google Scholar 

  8. 8.

    Vroman I, Tighzert L (2009) Review biodegradable polymers. Materials 2:307–344. doi:10.3390/ma2020307

    CAS  Article  Google Scholar 

  9. 9.

    Chen RY, Zou W, Wu CR, Jia SK, Huang Z, Zhang GZ, Yang ZT, Qu JP (2014) Poly(lactic acid)/poly(butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: analysis of mechanical properties, morphology, and crystallization behavior. Polym Test 34:1–9. doi:10.1016/j.polymertesting.2013.12.009

    Article  Google Scholar 

  10. 10.

    Dorez G, Taguet A, Ferry L, Cuesta JML (2014) Phosphorous compounds as flame retardants for polybutylene succinate/flax biocomposite: additive versus reactive route. Polym Degrad Stabil 102:152–159. doi:10.1016/j.polymdegradstab.2014.01.018

    CAS  Article  Google Scholar 

  11. 11.

    Phua YJ, Chow WS, Mohd Ishak ZA (2011) The hydrolytic effect of moisture and hygrothermal aging on poly(butylenes succinate)/organo-montmorillonite nanocomposites. Polym Degrad Stabil 96(7):1194–1203. doi:10.1016/j.polymdegradstab.2011.04.017

    CAS  Article  Google Scholar 

  12. 12.

    Ravati S, Favis BD (2013) Tunable morphologies for ternary blends with poly(butylene succinate): partial and complete wetting phenomenon. Polymer 549(13):3271–3281. doi:10.1016/j.polymer.2013.04.005

    Article  Google Scholar 

  13. 13.

    Khalil F, Galland S, Cottaz A, Joly C, Degraeve P (2014) Polybutylene succinate adipate/starch blends: a morphological study for the design of controlled release films. Carbohyd Polym 108:272–280. doi:10.1016/j.carbpol.2014.02.062

    CAS  Article  Google Scholar 

  14. 14.

    Sonnenschein MF, Guillaudeu SJ, Landes BG, Wendt BL (2010) Comparison of adipate and succinate polyesters in thermoplastic polyurethanes. Polymer 51:3685–3692. doi:10.1016/j.polymer.2010.06.012

    CAS  Article  Google Scholar 

  15. 15.

    Jbilou F, Joly C, Galland S, Belard L, Desjardin V, Bayard R, Dole P, Degraeve P (2013) Biodegradation study of plasticized corn flour/poly(butylene succinate-co-butylene adipate) blends. Polym Test 32:1565–1575. doi:10.1016/j.polymertesting.2013.10.006

    CAS  Article  Google Scholar 

  16. 16.

    Díaz A, Katsarava R, Puiggalí J (2014) Review synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 15:7064–7123. doi:10.3390/ijms15057064

    Article  Google Scholar 

  17. 17.

    Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeter Biodegr 49:245–252. doi:10.1016/S0964-8305(02)00051-3

    CAS  Article  Google Scholar 

  18. 18.

    Treviño AL, Sámchez GG, Herrera RR, Aguilar CN (2012) Microbial enzymes involved in polyurethane biodegradation: a review. J Polym Environ 20:258–265. doi:10.1007/s10924-011-0390-5

    Article  Google Scholar 

  19. 19.

    Barrioni BR, Maria de Carvalho S, Oréfice RL, Rocha de Oliveira AA, Pereira MM (2015) Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Mat Sci Eng C 52:22–30. doi:10.1016/j.msec.2015.03.027

    CAS  Article  Google Scholar 

  20. 20.

    Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stabil 98:643–650. doi:10.1016/j.polymdegradstab.2012.11.010

    CAS  Article  Google Scholar 

  21. 21.

    Domanska A, Boczkowska A (2014) Biodegradable polyurethanes from crystalline prepolymers. Polym Degrad Stabil 108:175–181. doi:10.1016/j.polymdegradstab.2014.06.017

    CAS  Article  Google Scholar 

  22. 22.

    Arcana IM, Bundjali B, Hasan M, Hariyawati K, Mariani H, Anggraini SD, Ardana A (2010) Study on properties of poly(urethane-ester synthesized from prepolymers of ε-caprolactone and 2,2-dimethyl-1,3-propanediol monomers and their biodegradability. J Polym Environ 18:188–195. doi:10.1007/s10924-010-0189-9

    CAS  Article  Google Scholar 

  23. 23.

    Maafi EM, Malek F, Tighzert L, Dony F (2010) Synthesis of polyurethane and characterization of its composites based on Alfa cellulose fibers. J Polym Environ 18:638–646. doi:10.1007/s10924-010-0218-8

    CAS  Article  Google Scholar 

  24. 24.

    Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Preparation and properties of bio-based polyurethane containing polycaprolactone and natural rubber. J Polym Environ 21:807–815. doi:10.1007/s10924-012-0567-6

    CAS  Article  Google Scholar 

  25. 25.

    Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. J Appl Polym Sci 130(1):453–462. doi:10.1002/app.39170

    CAS  Article  Google Scholar 

  26. 26.

    Valério A, Conti DS, Araújo PHH, Sayer C, Rocha SRP (2015) Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloid Surface B 135:35–41. doi:10.1016/j.colsurfb.2015.07.044

    Article  Google Scholar 

  27. 27.

    Chan LHC, Correa RS, Coronado RFV, Uc JMC, Rodríguez JVC, Quintana P, Pérez PB (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044. doi:10.1016/j.actbio.2009.12.010

    Article  Google Scholar 

  28. 28.

    Hernández LM, Sánchez FH, Ribelles JLG, Serra RS (2011) Segmented poly(urethane-urea) elastomers based on polycaprolactone: structure and properties. Appl Polym Sci 119:2093–2104. doi:10.1002/app.32929

    Article  Google Scholar 

  29. 29.

    Wu CL, Chiu SH, Lee HT, Suen MC (2015) Synthesis and properties of biodegradable polycaprolactone/polyurethanes using fluoro chain extenders. Polym Adv Technol. doi:10.1002/pat.3737

    Google Scholar 

  30. 30.

    Han J, Chen B, Ye L, Zhang A, Zhang J, Feng Z (2009) Synthesis and characterization of biodegradable polyurethane based on poly(ε-caprolactone) and l-lysine ethyl ester diisocyanate. Front Mater Sci China 3(1):25–32. doi:10.1007/s11706-009-0013-4

    Article  Google Scholar 

  31. 31.

    Panwiriyarat W, Tanrattanakul V, Pilard JF, Burel F, Kébir N (2016) Elaboration and properties of renewable polyurethanes based on natural rubber and biodegradable poly(butylene succinate) soft segments. J Appl Polym Sci 42943:1–8. doi:10.1002/APP.42943

    Google Scholar 

  32. 32.

    Oh HJ, Kim WY, Lee DS, Lee YS (2000) Polyurethane anionomers based on poly(butylene succinate), 4,4′-methylenebis(phenyl isocyanate), and 2,2-bis(hydroxymethyl)propionic acid. J Ind Eng Chem 6(6):425–430

    CAS  Google Scholar 

  33. 33.

    Lee SI, Yu SC, Lee YS (2001) Degradable polyurethanes containing poly(butylene succinate) and poly(ethylene glycol). Polym Degrad Stabil 72:81–87. doi:10.1016/S0141-3910(00)00205-6

    CAS  Article  Google Scholar 

  34. 34.

    Zeng JB, Li YD, Zhu QY, Yang KK, Wang XL, Wang YZ (2009) A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 50:1178–1186. doi:10.1016/j.polymer.2009.01.001

    CAS  Article  Google Scholar 

  35. 35.

    Moon SY, Park YD, Kim CJ, Won CH, Lee YS (2003) Effect of chain extenders on polyurethane containing both poly(butylene succinate) and poly(ethylene glycol) as soft segments. Bull Korean Chem Soc 24(9):1361–1364

    CAS  Article  Google Scholar 

  36. 36.

    Poussard L, Mecheri A, Mariage J, Batakat I, Bonnaud L, Raquez JM, Dubois P (2014) Synthesis of oligo(butylene succinate)-based polyurethanes. J Renew Mater 1(10):13–22. doi:10.7569/JRM.2013.634132

    Article  Google Scholar 

  37. 37.

    Lu X, Huang J, He G, Yang L, Zhang N, Zhao Y, Qu J (2013) Preparation and characterization of cross-linked poly(butylene succinate) by multifunctional toluene diisocyanate-trimethylolpropane polyurethane propolymer. Ind Eng Chem Res 52:13677–13684. doi:10.1021/ie4020342

    CAS  Article  Google Scholar 

  38. 38.

    Zheng L, Li C, Zhang D, Guan G, Xiao Y, Wang D (2011) Synthesis, characterization and properties of novel biodegradable multiblock copolymers comprising poly(butylene succinate) and poly(1,2-propylene terephthalate) with hexamethylene diisocyanate as a chain extender. Polym Int 60:666–675. doi:10.1002/pi.3000

    CAS  Article  Google Scholar 

  39. 39.

    Alishiri M, Shojaei A, Abdekhodie MJ, Yeraneh H (2014) Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Mater Sci Eng, C 42:763–773. doi:10.1016/j.msec.2014.05.056

    CAS  Article  Google Scholar 

  40. 40.

    Tsou CH, Lee HT, Guzman MD, Tsai HA, Wang PN, Cheng HJ, Suen MC (2015) Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O. Poym Bull 72:1545–1561. doi:10.1007/s00289-015-1356-x

    CAS  Article  Google Scholar 

  41. 41.

    Prisacariu C (2011) Polyurethane elastomer from morphology to mechanical aspects. New York, USA

  42. 42.

    Pignatello R (2013) Advances in biomaterials science and biomedical applications. doi:10.5772/56420

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (SIT580645S) and by Prince of Songkla University, Surat Thani Campus, 2015. The authors would like to express their gratitude to the Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus. We also thank Assoc. Prof. Dr. Seppo Karrila for assistance with manuscript preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wannarat Panwiriyarat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panwiriyarat, W., Tanrattanakul, V. & Chueangchayaphan, N. Study on physicochemical properties of poly(ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly(butylene succinate) as soft segments. Polym. Bull. 74, 2245–2261 (2017). https://doi.org/10.1007/s00289-016-1833-x

Download citation

Keywords

  • Polyurethane
  • Poly(ε-caprolactone)
  • Poly(butylene succinate)
  • Biodegradable polymers