Polymer Bulletin

, Volume 74, Issue 6, pp 2217–2244 | Cite as

Thermal, physical, structural, thermomechanical features and single gas permeation comparison of fluorine, phenyl phosphine oxide-based copolyimides with poly(dimethylsiloxane)

  • Merve Biçen
  • Sevim Karataş
  • Nilhan Kayaman-ApohanEmail author
  • Atilla Güngör
Original Paper


In this study, a series of copolyimide have been obtained, using a newly synthesized monomer named bis-(3-aminophenoxy-3-trifluoromethyl-4-phenyl)phenylphosphine oxide (m-BA6FPPO), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′-oxydianiline (ODA) and poly(dimethylsiloxane) (PDMS, amine terminated, M n  = 2500 g/mol). Homogeneous cavity distribution and homogeneous porosity appeared for the copolyimide containing 1.5 wt% of poly(dimethylsiloxane). The tensile strength and modulus of the materials containing 1.5 wt% of poly(dimethylsiloxane) had the highest values among others. The decomposition temperatures increased with increase of PDMS content. In general, hybrid materials were transparent. Storage moduli of 1.5 and 2 wt% of silicone containing materials were greater than those of others. The optimum results for the single gas permeability were achieved at 1 bar for the materials containing 1.5 and 2 wt% poly(dimethylsiloxane). The volume fraction of silicone was determined from thermomechanical analysis at a certain temperature for each sample. The best correlation between volume fraction of silicone and selectivities was obtained for CH4/CO2, CH4/N2, CO2/O2, CO2/N2 and CH4/O2. Bis-(3-aminophenoxy-3-trifluoromethyl-4-phenyl)phenylphosphine oxide ingredient in the same amounted silicone containing materials decreased the permeabilities of gases such as CO2, CH4, H2, while increased O2 permeability at 1 bar.


Fluoropolymers Polyimides Poly(dimethylsiloxane) Single gas permeation 


  1. 1.
    Drioli E, Barbier G (2011) Membrane engineering for the treatment of gases, Ch. 5, vol 1. RSC, Cambridge, pp 125–150Google Scholar
  2. 2.
    Drioli E, Barbier G (2011) Membrane engineering for the treatment of gases, Ch. 8, vol 1. RSC, Cambridge, pp 215–245Google Scholar
  3. 3.
    Reddy BSR, Senthilkumar U (2003) Prospects of siloxane membrane technology for gas separation, a review. U J Sci Ind Res 62:666–677Google Scholar
  4. 4.
    Drioli E, Barbier G (2011) Membrane engineering for the treatment of gases, Ch. 4, vol 1. RSC, Cambridge, pp 84–125Google Scholar
  5. 5.
    Wang H, Chung TS, Paul DR (2014) Thickness dependent thermal rearrangement of an ortho-functional polyimide. J Membr Sci 450:308–312CrossRefGoogle Scholar
  6. 6.
    Lai JY, Lee MH, Chen SH, Shyu SS (1994) Polysiloxaneimide membranes I. physical properties. Polym J 26:1360–1367CrossRefGoogle Scholar
  7. 7.
    Hirayama Y, Yoshinaga T, Nakanishi S, Kusuki Y (1999) Relation between gas permeabilities and structure of polyimides, Ch. 14. ACS, Washington, pp 194–214Google Scholar
  8. 8.
    Lee YJ, Gungor A, Yoon TH, McGrath JE (1995) Adhesive and thermo-mechanical behavior of phosphorus-containing thermoplastic polyimides. J Adhes 55:165–177CrossRefGoogle Scholar
  9. 9.
    Banerjee S, Maier G, Burger M (1999) Novel poly (arylene ether)s with pendant trifluoromethyl groups. Macromolecules 32:4279–4289CrossRefGoogle Scholar
  10. 10.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185CrossRefGoogle Scholar
  11. 11.
    Luo S, Liu Q, Zhang B, Wiegand J, Freeman B, Guo R (2015) Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation. J Membr Sci 480:20–30CrossRefGoogle Scholar
  12. 12.
    Shamsipur H, Dawood BA, Budd PM, Bernardo P, Clarizia G, Jansen JC (2014) Thermally rearrangeable PIM-polyimides for gas separation membranes. Macromolecules 47:5595–5606CrossRefGoogle Scholar
  13. 13.
    Guth EJ (1945) Theory of filler reinforcement. J Appl Phys 16:20–25CrossRefGoogle Scholar
  14. 14.
    Moore TT, Damle S, Williams P, Koros WJ (2004) Characterization of low permeability gas separation membranes and barrier materials; design and operation considerations. J Membr Sci 245:227–231CrossRefGoogle Scholar
  15. 15.
    Satpathi H, Ghosh A, Komber H, Banerjee S, Voit B (2011) Synthesis and characterization of new semifluorinated linear and hyperbranched poly(arylene ether phosphine oxide)s through B2 + A2 and AB2 approaches. Eur Polym J 47:196–207CrossRefGoogle Scholar
  16. 16.
    Wang L, Cao Y, Zhou M, Zhou SJ, Yuan Q (2007) Novel copolyimide membranes for gas separation. J Membr Sci 305:338–346CrossRefGoogle Scholar
  17. 17.
    Jeong KU, Kim JJ, Yoon TH (2001) Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. Polymer 42:6019–6030CrossRefGoogle Scholar
  18. 18.
    Lee YB, Park HB, Shim JK, Lee YM (1999) Synthesis and characterization of polyamideimide-branched siloxane and its gas-separation. J Appl Polym Sci 74:965–973CrossRefGoogle Scholar
  19. 19.
    Alam SMM (2011) Proceedings of the international conference on mechanical engineering, Dhaka, Bangladesh, pp 1–7Google Scholar
  20. 20.
    Javaid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112:219–226CrossRefGoogle Scholar
  21. 21.
    Mittal V (2011) Thermally stable and flame retardant polymer nanocomposites. Academic, Cambridge, pp 1–383CrossRefGoogle Scholar
  22. 22.
    Apohan NK, Karataş S, Bilen B, Güngör A (2008) In situ formed silica nanofiber reinforced UV-curable phenylphosphine oxide containing coatings. J Sol Gel Sci Technol 46:87–97CrossRefGoogle Scholar
  23. 23.
    Lua AC, Shen Y (2013) Preparation and characterization of polyimide-silica Composite membranes and their derived carbon-silica composite membranes for gas separation. Chem Eng J 220:441–451CrossRefGoogle Scholar
  24. 24.
    Ye X, Wang J, Xu Y, Niu L, Fan Z, Gong P, Ma L, Wang H, Yang Z, Yang S (2014) Mechanical properties and thermostability of polyimide/mesoporous silica nanocomposite via effectively using the pores. J Appl Polym Sci 131(41173):1–8Google Scholar
  25. 25.
    Tena A, Viuda M, Palacio L, Pradanos P, Fernandez AM, Lozano AE, Hernande A (2014) Prediction of gas permeability through composite segregated polymeric membranes by an effective medium model. J Membr Sci 453:27–35CrossRefGoogle Scholar
  26. 26.
    Lau CH, Li P, Li F, Chung TS, Paul DR (2013) Reverse-selective polymeric membranes for gas separation. Prog Polym Sci 38:740–766CrossRefGoogle Scholar
  27. 27.
    Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47:6999–7013CrossRefGoogle Scholar
  28. 28.
    Chen HZ, Thong Z, Li P, Chung V (2014) High performance composite hollow Fiber membranes for CO2/H2 and CO2/N2 separation. Int J Hydrogen Energy 39:5043–5053CrossRefGoogle Scholar
  29. 29.
    Park JS, Gleason KL, Gaines KE, Mecham SJ, McGrath JE, Freeman BD (2014) Effect of Uv crosslinking on transport properties of CO2 and N2 through poly(imidesiloxane) segmented copolymer. Energy Procedia 63:210–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Merve Biçen
    • 1
  • Sevim Karataş
    • 1
  • Nilhan Kayaman-Apohan
    • 1
    Email author
  • Atilla Güngör
    • 1
  1. 1.Department of ChemistryMarmara UniversityGöztepeTurkey

Personalised recommendations