Skip to main content

Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate

Abstract

Drug carrier, poly(maleic anhydride-co-vinyl acetate) (MAVA or poly[MA-co-VA]) copolymer, was traditionally synthesized by free radical chain polymerization reaction, in methyl ethyl ketone (MEK) organic media at 80 °C, using benzoyl peroxide (BPO) as the radicalic initiator. The purified copolymer was then modified with a chemotherapeutic agent, doxorubicin hydrochloride (DOX) at 75 °C for 72 h, using N-(3-dimethyl-aminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC) as the carboxylic acid-activating agent. Structural characterization of the MAVA and the modified MAVA/DOX conjugate was carried out by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H-NMR and 13C-NMR). Their molecular weights were determined by size-exclusion chromatography (SEC). The spectroscopic and SEC results confirmed that conjugated/modification reaction was successfully carried out. UV spectrophotometric measurements indicated that MAVA/DOX preserved its molecular stability in physiological body fluid, PBS (physiological pH 7.40 at 37 °C). Antiproliferative activities of MAVA/DOX were determined by BrdU cell proliferation ELISA assay using C6 (Rat Brain tumor cells) and HeLa (human uterus carcinoma) cell lines in vitro by comparing with free DOX agent (reference compound). Although MAVA showed low antiproliferative activity, both MAVA/DOX and DOX exhibited greater activity against HeLa and C6. Lactate dehydrogenase (LDH) leakage assay was performed for MAVA/DOX and DOX, which detected a non-toxic effect against C6 even at the highest dose (100 μg/mL). IC50 and IC75 values were also determined using ED50 plus v1.0. Molecular modeling at M06-L/6-31 + G(d,p)//AM1 level showed that the electron density in MAVA/DOX is more localized resulting a higher polarization and thereby a higher dipole moment which shed light on the solubility of MAVA/DOX conjugate.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7

References

  1. Thakur VK, Thakur MK, Popescu I (2015) Handbook of polymers for pharmaceutical technologies: processing and applications, vol 2. Scrivener Publishing. doi:10.1002/9781119041412.ch10

  2. Florence AT, Siepmann J (2009) Modern pharmaceutics: basic principles and systems, vol 1, 5th edn. CRC Press, Boca Raton

  3. Bacu E, Chitanu GC, Couture A, Grandclaudon P, Singurel Gh, Carpov A (2002) Potential drug delivery systems from maleic anhydride copolymers and phenothiazine derivatives. Eur Polym J 38:1509–1513

    CAS  Article  Google Scholar 

  4. Saad GR, Morsi RE, Mohammady SZ, Elsabee MZ (2008) Dielectric relaxation of monoesters based poly(styrene-co-maleic anhydride) copolymer. J Polym Res 15:115–123. doi:10.1007/s10965-007-9150-6

    CAS  Article  Google Scholar 

  5. Atıcı OG, Akar A, Rahimian R (2001) Modification of poly(maleic anhydride-co- styrene) with hydroxyl containing compounds. Turk J Chem 25:259–266

    Google Scholar 

  6. Patel H, Raval DA, Madamwar D, Patel SR (1998) Polymeric prodrug: synthesis, release study and antimicrobial property of poly(styrene-co-maleic anhydride)-bound acriflavine. Angew Makromol Chem 263:25–30

    CAS  Article  Google Scholar 

  7. Liu HY, Cao K, Yao Z, Li BG, Hu GH (2007) Variations of the glass-transition temperature in the imidization of poly(styrene-co-maleic anhydride). J Appl Polym Sci 104:2418–2422. doi:10.1002/app.25917

    CAS  Article  Google Scholar 

  8. Kumar N, Langer RS, Domb AJ (2002) Polyanhydrides: an overview. Adv Drug Deliv Rev 54:889–910. doi:10.1016/S0169-409X(02)00050-9

    CAS  Article  Google Scholar 

  9. Chiellini F, Piras AM, Errico C, Chiellini E (2008) Nanomedicine 3:367–393. doi:10.2217/17435889.3.3.367

    CAS  Article  Google Scholar 

  10. Popescu I, Suflet DM, Pelin IM, Chitanu GC (2011) Biomedical applications of maleic anhydride copolymers. Rev Roum Chim 56:173–188

    CAS  Google Scholar 

  11. Riabtseva A, Mitina N, Grytsyna I, Boiko N, Garamus VM, Stryhanyuk H, Stoika R, Zaichenko A (2016) Functional micelles formed by branched polymeric surfactants: synthesis, characteristics, and application as nanoreactors and carriers. Eur Polym J 75:406–422. doi:10.1016/j.eurpolymj.2016.01.006

    CAS  Article  Google Scholar 

  12. Song F, Li X, Wang Q, Liao L, Zhang C (2014) Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol 10:1–13

    Article  Google Scholar 

  13. Wang L, Kritensen J, Ruffner DE (1998) Delivery of antisense oligonucleotides using HPMA polymer: synthesis of A thiol polymer and its conjugation to water-soluble molecules. Bioconjug Chem 9:749–757

    CAS  Article  Google Scholar 

  14. Ulbrich K, Šubr V (2010) Adv Drug Deliver Rev 62:150–166

    CAS  Article  Google Scholar 

  15. Kadaji VG, Betageri CV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3:1972–2009. doi:10.3390/polym3041972

    Article  Google Scholar 

  16. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316. doi:10.1158/1078-0432.CCR-07-1441

    CAS  Article  Google Scholar 

  17. Minko T (2005) Soluble polymer conjugates for drug delivery. Drug Discov Today Tech 2:15–20

    CAS  Article  Google Scholar 

  18. Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60:886–898

    CAS  Article  Google Scholar 

  19. Duncan R (1999) Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Res Focus Rev 2:441–449

    CAS  Google Scholar 

  20. Hoste K, Winne KD, Schacht E (2004) Polymeric prodrugs. Int J Pharmaceut 277:119–131

    CAS  Article  Google Scholar 

  21. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci 51:135–153

    CAS  Google Scholar 

  22. Breslow DS (1976) Biologically active synthetic polymers. Pure Appl Chem 46:103–113

    CAS  Article  Google Scholar 

  23. Dhal PK, Holmes-Farley SR, Huval CC, Jozefiak TH (2006) Polymers as drugs. Adv Polym Sci 192:9–58

    CAS  Article  Google Scholar 

  24. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    CAS  Article  Google Scholar 

  25. Greish K, Sawa T, Fang J, Akaika T, Maeda H (2004) SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumors. J Control Release 97:219–230

    CAS  Article  Google Scholar 

  26. Maeda H, Ueda M, Morinaga T, Matsumoto T (1985) Conjugation of poly(styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties. J Med Chem 28:455–461

    CAS  Article  Google Scholar 

  27. Kobayashi A, Oda T, Maeda H (1988) Protein binding of macromolecular anticancer agent SMANCS: characterization of poly(styrene-co-maleic acid) derivatives as an albumin binding ligand. J Bioact Compat Polym 3:319–333

    CAS  Article  Google Scholar 

  28. Ohtsuka N, Konno T, Myauchi Y, Meada H (1987) Anticancer effects of arterial administration of the anticancer agent SMANCS with lipiodol on metastatic lymph nodes. Cancer 59:1560–1565

    CAS  Article  Google Scholar 

  29. Maeda H, Matsumoto T, Konno T, Iwai K, Ueda M (1984) Tailor-making of protein drugs by polymer conjugation for tumor targeting: a brief review on Smancs. J Protein Chem 3:181–193

    CAS  Article  Google Scholar 

  30. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H (2003) Macromolecular Therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 42:1089–1105

    CAS  Article  Google Scholar 

  31. Maeda H (1991) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 6:181–202

    CAS  Article  Google Scholar 

  32. DiMarco A, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123, 127): a new antibiotic with antitumor activity. Cancer Chemother Rep 53:33–37

    CAS  Google Scholar 

  33. Bruch M, Mäder D, Bauers F, Loontjens T, Mülhaupt R (2000) Melt modification of poly(styrene-co-maleic anhydride) with alcohols in the presence of 1,3-oxazolines. J Polym Sci 38:1222–1231. doi:10.1002/(SICI)1099-0518(20000415)38:8<1222:AID-POLA5>3.0.CO;2-Z

    CAS  Article  Google Scholar 

  34. Ece A, Boris P (2014) A computational insight into acetylcholinesterase inhibitory activity of a new lichen depsidone. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2014.949256

    Google Scholar 

  35. Dewar MJS, Zoebisch EG, Stewart JJP (1985) The development and use of quantum mechanical molecular models. 76. AMI: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    CAS  Article  Google Scholar 

  36. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:1–17

    Google Scholar 

  37. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    CAS  Article  Google Scholar 

  38. Jacquemin D, Perpete EA, Ciofini I et al (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput 6:2071–2085

    CAS  Article  Google Scholar 

  39. Karakus G, Zengin HB, Akin Polat Z, Yenidunya AF, Aydin S (2013) Cytotoxicity of three maleic anhydride copolymers and common solvents used for polymer solvation. Polym Bull 70:1591–1612. doi:10.1007/s00289-012-0860-5

    CAS  Article  Google Scholar 

  40. Nguyen V, Yoshida W, Cohen Y (2003) J Appl Polym Sci 87:300–310

    CAS  Article  Google Scholar 

  41. Fles D, Vukovic R, Kuzmic AE, Bogdanic G, Pilizota V, Karlovic D, Markus K, Wolsperger K, Vikic-Topic D (2003) Croat Chem Acta 76:69–74

    CAS  Google Scholar 

  42. Karakus G, Akin Polat Z, Sahin Yaglioglu A, Karahan M, Yenidunya AF (2013) Synthesis, characterization, and assessment of cytotoxic, antiproliferative, and antiangiogenic effects of a novel procainamide hydrochloride-poly(maleic anhydride-co-styrene) conjugate. J Biomat Sci Polym E 24:1260–1276. doi:10.1080/09205063.2012.750209

    CAS  Article  Google Scholar 

  43. Khaon MK (1982) Synthesis of esters. J Org Chem 47:1962–1965

    Article  Google Scholar 

  44. Lundblad RL et al (1984) Modification of carboxyl groups in proteins. Chem Reag Protein Modif 2:105

    Google Scholar 

  45. Chernikova E, Terpugova P, Bui C, Charleux B (2003) Effect of comonomer composition on the controlled free-radical copolymerization of styrene and maleic anhydride by reversible addition-fragmentation chain transfer (RAFT). Polymer 44:4101–4107

    CAS  Article  Google Scholar 

  46. Li Y, Richard-Turner S (2010) Free radical copolymerization of methyl substituted stilbenes with maleic anhydride. Eur Polym J 46:821–828

    CAS  Article  Google Scholar 

  47. Sundell AM, Luttikhedde HJG (1999) Drug release from ionomer cements based on hydrolyzed poly(vinyl acetate-maleic anhydride). Pure Appl Chem A36:1045–1059

    CAS  Google Scholar 

  48. Demirtas I, Sahin A, Ayhan B, Tekin S, Telci I (2009) Antiproliferative effects of the methanolic extracts of sideritis libanotica labill. subsp. linearis. Rec Nat Prod 3:104–109

    CAS  Google Scholar 

  49. Demirtas I, Sahin A (2013) Bioactive volatile content of the stem and root of Centaurea carduiformis DC. subsp. carduiformis var. carduiformis. J Chem 2013:125286-1–125286-6. doi:10.1155/2013/125286

    Article  Google Scholar 

  50. Sahin-Yaglıoglu A, Akdulum B, Erenler R, Demirtas I, Telci I, Tekin S (2013) Antiproliferative activity of pentadeca-(8E, 13Z) dien 11-yn-2-one and (E)-1,8-pentadecadiene from Echinacea pallida (Nutt.) Nutt. roots. Med Chem Res. doi:10.1007/s00044-012-0297-2

  51. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford

  52. Tasdemir IH, Ece A, Kilic E (2012) Experimental and theoretical study on the electrochemical behavior of zofenopril and its voltammetric determination. Curr Pharm Anal 8(4):339–348

    CAS  Article  Google Scholar 

  53. (2015) Small-Molecule Drug Discovery Suite 2015-2: QikProp, version 4.4. Schrödinger, LLC, New York

  54. Yoon KJ, Woo JH, Seo YS (2003) Formaldehyde free cross-linking agents based on maleic anhydride copolymers. Fiber Polym 4:182–187

    CAS  Article  Google Scholar 

  55. Xiao CM, Tan J, Xue GN (2010) Synthesis and properties of starch-g-poly(maleic anhydride-co-vinyl acetate). Express Polym Lett 4:9–16

    CAS  Article  Google Scholar 

  56. Chitanu GC, Popescu I, Carpov A (2006) Synthesis and characterization of maleic anhydride copolymers and their derivatives. 2. New data on the copolymerization of maleic anhydride with vinyl acetate. Rev Roum Chim 51:923–929

    CAS  Google Scholar 

  57. Krayukhina MA, Kozybakova SA, Samoilava NA, Babak VG, Karaeva SZ, Yamskov IA (2007) Synthesis and properties of amphiphilic maleic acid copolymers. Russ J Appl Chem 80:1145–1150. doi:10.1134/S1070427207070269

    CAS  Article  Google Scholar 

  58. Qiao Z, Xie Y, Chen M, Xu J, Zhu Y, Qian Y (2000) Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology. Chem Phys Lett 321:504–507

    CAS  Article  Google Scholar 

  59. Sunel V, Popa M, Stoican AD, Popa AA, Uglea C (2008) Poly (maleic anhydride-alt-vinyl acetate) conjugate with alkylating agents. Materiale Plastice 45:149–153

    CAS  Google Scholar 

  60. Rzayev ZMO (2011) Graft copolymers of maleic anhydride and its isostructural analogues: high performance engineering materials. Int Rev Chem Eng 3:153–215

    Google Scholar 

  61. Pal J, Singh H, Ghosh AK (2004) Modification of LLDPE using esterified styrene maleic anhydride copolymer: study of its properties and environmental degradability. J Appl Polym Sci 92:102–108

    CAS  Article  Google Scholar 

  62. Jeong JH, Byoun YS, Ko SB, Lee YS (2001) Chemical modification of poly(styrene-alt-maleic anhydride) with antimicrobial 4-aminobenzoic acid and 4-hydroxybenzoic acid. J Ind Eng Chem 7:310–315

    CAS  Google Scholar 

  63. Xiao L, Shimotani H, Ozawa M, Li J, Dragoe N, Saigo K, Kitazawa K (1999) Synthesis of a novel [60]fullerene pearl-necklace polymer, poly(4,4*-carbonylbisphenylene trans-2-[60]fullerenobisacetamide). J Polym Sci Pol Chem 37:3632–3637

    CAS  Article  Google Scholar 

  64. John J, Dalal MK, Patel DR, Ram RN (1997) Preparation, properties, and catalytic application of polymer-bound Ru(III) complexes. JMS Pure Appl Chem A34:489–501

    CAS  Google Scholar 

  65. Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nanotoday (Review) 3:31–37

    CAS  Article  Google Scholar 

  66. Kaplan Can H, Doğan AL, Rzaev ZMO, Uner AH, Güner A (2005) Synthesis and antitumor activity of poly(3,4-dihydro-2H-pyran-co-maleic anhydride-co-vinyl acetate). J Appl Polym Sci 96:2352–2359

    Article  Google Scholar 

  67. Balaji R, Nanjundan S (1999) Copolymerization of 3-methoxy-4-methacryloyloxybenzal phenylimine with methyl methacrylate. Eur Polym J 35:1133–1138

    CAS  Article  Google Scholar 

  68. Sato M, Ohta R, Handa M, Kasuga K (2002) Thermotropic liquid crystalline polymers containing five-membered heterocyclic groups VIII. Synthesis, and liquid crystalline and photoluminescent properties of semi-rigid polyesters based on a distyrylbenzene analogue of 1,3,4-thiadiazole. Liq Cryst 29:1441–1446

    CAS  Article  Google Scholar 

  69. Ghosh S, Banthia AK (2003) An approach to novel polyamidoamine (PAMAM) side chain dendritic polyesterurethane (SCDPEU) block copolymer architectures. Eur Polym J 39:2141–2146

    CAS  Article  Google Scholar 

  70. Ferruti P, Ranucci E, Trotta F, Gianasi E, Evagorou EG, Wasil M, Wilson G, Duncan R (1999) Synthesis, characterization and antitumour activity of platinum (II) complexes of novel functionalized poly(amido amine)s. Macromol Chem Phys 200:1644–1654

    CAS  Article  Google Scholar 

  71. Karakus G, Akin Polat Z, Yenidunya AF, Zengin HB, Karakus CB (2013) Synthesis, characterization and cytotoxicity of novel modified poly[(maleic anhydride)-co-(vinyl acetate)]/noradrenaline conjugate. Polym Int 62:492–500. doi:10.1002/pi.4341

    CAS  Article  Google Scholar 

  72. Zafar F, Sharmin E, Ashraf SM, Ahmad S (2004) Studies on poly(styrene-co-maleic anhydride)-modified polyesteramide-based anticorrosive coatings synthesized from a sustainable resource. J Appl Polym Sci 92:2538–2544

    CAS  Article  Google Scholar 

  73. Ak M, Durmus A, Toppare L (2007) Synthesis and characterization of poly(N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide) and its spectroelectrochemical properties. J Appl Electrochem 37:729–735

    CAS  Article  Google Scholar 

  74. Rajput RS, Rupainwar DC, Singh RK, Singh A (2009) Study on characterization and degree of esterification of styrene maleic anhydride by some medicines. Indian J Chem B 48:1597–1600

    Google Scholar 

  75. Wang S, Wang M, Lei Y, Zhang L (1999) “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. J Mater Sci Lett 18:2009–2012

    Article  Google Scholar 

  76. Edwards HGM, Hickmott E, Hughes MA (1997) Vibrational spectroscopic studies of potential amidic extractants for lanthanides and actinides in nuclear waste treatment. Spectrochim Acta A 53:43–53

    Google Scholar 

  77. Coskun M, Seven P (2011) Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization. React Funct Polym 71:395–401

    CAS  Article  Google Scholar 

  78. Hwang S, Lee CH, Ahn IS (2008) Product identification of guaiacol oxidation catalyzed by manganese peroxidase. J Ind Eng Chem 14:487–492

    CAS  Article  Google Scholar 

  79. Lee E, Moon BH, Park Y, Hong S, Lee S, Lee Y, Lim Y (2008) Effects of hydroxy and methoxy substituents on NMR data in flavonols. Bull Korean Chem Soc 29:507–510

    CAS  Article  Google Scholar 

  80. Nemtoi G, Beldie C, Tircolea C, Popa I, Cretescu I, Humelnicu I, Humelnicu D (2001) Behaviour of the poly(maleic anhydride-co-vinyl acetate) copolymer in aqueous solutions. Eur Polym J 37:729–735

    CAS  Article  Google Scholar 

  81. Sun CZ, Lu CT, Zhao YZ, Guo P, Tian JL, Zhang L, Li XK, Lv HF, Dai DD, Li X (2011) Characterization of the doxorubicin-pluronic F68 conjugate micelles and their effect on doxorubicin resistant human erythroleukemic cancer cells. J Nanomed Nanotechnol 2:2–6

    Google Scholar 

  82. Sanmathi CS, Prasannakumar S, Sherigara BS (2004) Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios. Bull Mater Sci 27:243–249

    CAS  Article  Google Scholar 

  83. Ranjbar-Karimi R, Loghmani-Khouzani H (2011) Synthesis of new azines in various reaction conditions and investigation of their cycloaddition reaction. J Iran Chem Soc 8:223–230

    CAS  Article  Google Scholar 

  84. Mustata F, Bicu I (2006) P-aminobenzoic acid/cyclohexanon/formaldehyde resins as hardner for epoxy resins. Synthesis and characterization. J Optoelectron Adv M 8:871–875

    CAS  Google Scholar 

  85. Barron PF, Hill DJT, O’Donnell JH, O’Sullivan PW (1984) Applications of DEPT experiments to the 13C NMR of copolymers: poly(styrene-co-maleic anhydride) and poly (styrene-co-acrylonitrile). Macromol 17:1967–1972

    CAS  Article  Google Scholar 

  86. Sanchez CO, Alvarado F, Bustos CJ, Schott E, Gatica N, Valdebenito K (2007) Synthesis, characterization, thermal stability and fluorescence of hybrid polymers prepared from amino-phenyl esters. Polym Bull 59:19–330. doi:10.1007/S00289-007-0776-7

    Article  Google Scholar 

  87. Ocampo-Fernández M, Herrera AM, Méndez-Bautista T, Garcia-Serrano J (2009) Synthesis and characterization of diethyl-p-vinylbenzyl phosphonate monomer: precursor of ion exchange polymers for fuel cells. Superficies y Vacío 22:6–10

    Google Scholar 

  88. Lai MF, Li J, Liu JJ (2005) Thermal and dynamic mechanical properties of poly(propylene carbonate). J Therm Anal Calorim 82:293–298

    CAS  Article  Google Scholar 

  89. Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Sciences Research Projects Foundation of Cumhuriyet University (Project No: F258 and F339). Structural characterizations were carried out at Technology Research and Developing Centre, Erciyes University, Kayseri, Turkey. Average molecular weight distribution of MAVA and MAVA/DOX was analyzed by Size-Exclusion Chromatography (SEC) Measurements at Yildiz Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulderen Karakus.

Ethics declarations

Conflict of interest

The authors of the manuscript solemnly declare that no scientific and/or financial conflicts of interest exist with other people or institutions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karakus, G., Ece, A., Yaglioglu, A.S. et al. Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate. Polym. Bull. 74, 2159–2184 (2017). https://doi.org/10.1007/s00289-016-1821-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1821-1

Keywords

  • Poly(maleic anhydride-co-vinyl acetate) modification
  • Doxorubicin hydrochloride
  • Antiproliferative and cytotoxic activity
  • HeLa and C6 cell lines
  • Computational study
  • Electrostatic potential counter map