Skip to main content
Log in

Synthesis of poly(styrene-co-methacrylic acid)-coated magnetite nanoparticles as effective adsorbents for the removal of crystal violet and Rhodamine B: a comparative study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, Fe3O4/Poly(styrene-co-methacrylic acid) (St-co-MAA) particles with different particle sizes (20 and 255 nm) were synthesized by miniemulsion polymerization via two routes. The synthesized particles were used as adsorbents for the removal of crystal violet (CV) and Rhodamine B (RB) from water solution. The as-prepared adsorbents were characterized by Fourier transform infrared (FT-IR) spectra, transmission electron microscope (TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Magnetic measurements revealed that the obtained Fe3O4/Poly(St-co-MAA) with small particle size (20 nm) has superparamagnetism properties. The effects of various factors on the adsorption capacity, such as contact time, pH of dyes solution, and initial dyes concentration were investigated. The studies showed that the experimental data are fitted well with Langmuir model, indicating homogeneous monolayer adsorption process. Adsorption kinetics of Fe3O4/Poly(St-co-MAA) were well explained by the pseudo-second-order model, suggesting a chemical adsorption process. The maximum adsorption capacities (q m) of CV and RB onto Fe3O4/Poly(St-co-MAA) with small particles size were 416.66 and 69.54 mg g−1, respectively, which were much higher than the adsorption capacities of adsorbent with large particle sizes (q m of CV = 207.9 and q m of RB = 38.91 mg g−1). The dye-adsorbed magnetic Poly(St-co-MAA) could be easily desorbed and reused for at least four cycles with a little decrease in adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Review: adsorption of methylene blue on low-cost adsorbents. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  2. Wang SB, Ng CW, Wang WT, Li Q, Li LQ (2012) A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 57:1563–1569

    Article  CAS  Google Scholar 

  3. Silva LS, Lima LCB, Silva FC, Matos JME, Santos MRMC, Júnior LSS, Sousa EC, Filho S (2013) Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethio. Chem Eng J 218:89–98

    Article  CAS  Google Scholar 

  4. Zhang YR, Su P, Huang J, Wang QR, Zhao BX (2015) A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water. Chem Eng J 262:313–318

    Article  CAS  Google Scholar 

  5. Oehmen A, Vergel D, Fradinho J, Reis MA, Crespo JG, Velizarov S (2014) Mercury removal from water streams through the ion exchange membrane bioreactor concept. J Hazard Mater 264:65–70

    Article  CAS  Google Scholar 

  6. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physicochemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  7. Yan GY, Viraraghavan T (2001) Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour Technol 78:243–249

    Article  CAS  Google Scholar 

  8. Clark SE, Pitt R (2012) Targeting treatment technologies to address specific storm water pollutants and numeric discharge limits. Water Res 46:6715–6730

    Article  CAS  Google Scholar 

  9. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from waste water by waste materials. J Colloid Interface Sci 343:463–473

    Article  CAS  Google Scholar 

  10. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    Article  CAS  Google Scholar 

  11. Dogan M, Karaoglu MH, Alkan M (2009) Adsorption kinetics of maxilon yellow4Gl and maxilon red GRL dyes on kaolinite. J Hazard Mater 165:1142–1151

    Article  CAS  Google Scholar 

  12. Hosseinzadeh H, Zoroufi S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull. doi:10.1007/s00289-015-1340-5

  13. Gupta VK, Carrott PJM, Ribeiro MML, Carrott Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment-a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  14. Zhou L, Gao C, Xu WJ (2010) Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl Mater Interfaces 2(1):483–1491

    Google Scholar 

  15. Salima A, Benaouda B, Noureddine B, Duclaux L (2013) Application of Ulvalactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Res 47:3375–3388

    Article  CAS  Google Scholar 

  16. Ambashta RD, Sillanpaa M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  17. Masuda Y, Bekki M, Sonezaki S, Ohji T, Kato K (2009) Dye adsorption characteristics of anatase TiO2 film prepared in an aqueous solution. Thin Solid Films 518:845–849

    Article  CAS  Google Scholar 

  18. Samiee S, Goharshadi EK (2014) Graphene nanosheets as efficient adsorbent for an azo dye removal: kinetic and thermodynamic studies. J Nanopart Res 16:2542

    Article  Google Scholar 

  19. Min MH, Shen LD, Hong GS, Zhu MF, Zhang Y, Wang XF, Chen YM, Hsiao BS (2012) Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chem Eng J 197:88–100

    Article  CAS  Google Scholar 

  20. Ahmed IM, Gasser MS (2012) Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH). Appl Surf Sci 259:650–656

    Article  CAS  Google Scholar 

  21. Wang P, Ma Q, Hu D, Wang L (2015) Removal of Reactive Blue 21 onto magnetic chitosan microparticles functionalized with polyamidoamine dendrimers. React Funct Polym 91–92:43–50

    Article  Google Scholar 

  22. Qu L, Han T, Luo Z, Liu C, Mei Y, Zhu T (2015) One-step fabricated Fe3O4@C core–shell composites for dye removal: kinetics, equilibrium and thermodynamics. J Phys Chem Solids 78:20–27

    Article  CAS  Google Scholar 

  23. Daniel-da-Silva AL, Salgueiro AM, Creaney B, Oliveira-Silva R, Silva NJO, Trindade T (2015) Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. J Nanopart Res 17:302

    Article  Google Scholar 

  24. Yan H, Li H, Yang H, Li A, Cheng R (2013) Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradeable magnetic composite microsphere. Chem Eng J 223:402–411

    Article  CAS  Google Scholar 

  25. Aroguz AZ, Sayılı G (2015) The synthesis of silica-coated magnetic nanoparticles and using as adsorbent. Polym Bull. doi:10.1007/s00289-016-1612-8

  26. Sun H, Cao L, Lu L (2011) Magnetite reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  CAS  Google Scholar 

  27. Zhang ZY, Kong JL (2011) Novel magnetic Fe3O4@C nanoparticles as adsorbentsfor removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329

    Article  CAS  Google Scholar 

  28. Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:16–55

    Article  Google Scholar 

  29. Liu X, Liu H, Xing J, Guan Y, Ma Z, Shan G, Yang C (2003) Preparation and char-acterization of superparamagnetic functional polymeric microparticles. China Particuol 1:76–79

    Article  CAS  Google Scholar 

  30. Bakandritsos A, Bouropoulos N, Zboril R, Iliopoulos K, Boukos N, Chatzikyriakos G, Couris S (2008) Optically active spherical polyelectrolyte brushes with a nanocrystalline magnetic Core. Adv Funct Mater 18:1694–1706

    Article  CAS  Google Scholar 

  31. Lin ZZ, Zhang HY, Li L, Huang ZY (2016) Application of magnetic molecularly imprinted polymers in the detection of malachite green in fish samples. React Funct Polym 98:24–30

    Article  CAS  Google Scholar 

  32. Mefford OT, Carroll M, Vadala ML, Goff JD, Mejia-Ariza R, Saunders M, Woodward RC, St Pierre TG, Davis RM, Riffle JS (2008) Size analysis of PDMS—magnetite nanoparticle complexes: experiment and theory. Chem Mater 20:2184–2191

    Article  CAS  Google Scholar 

  33. Miles WC, Goff JD, Huffstetler PP, Reinholz CM, Pothayee N, Caba BL, Boyd JS, Davis RA, Riffle JS (2009) Synthesis and colloidal properties of polyether-magnetite complexes in water and phosphate-buffered saline. Langmuir 25:803–813

    Article  CAS  Google Scholar 

  34. Na K, Jung J, Lee J, Hyun J (2010) Thermoresponsive pore structure of biopolymer microspheres for a smart drug carrier. Langmuir 26(13):11165–11169

    Article  CAS  Google Scholar 

  35. Hong RY, Feng B, Liu G, Wang S, Li HZ, Ding JM, Zheng Y, Wei DG (2009) Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. J Alloy Compd 476:612–618

    Article  CAS  Google Scholar 

  36. Csetneki I, Faix MK, Szilagy AI, Kovacs AL, Nemeth Z, Zrinyi M (2004) Preparation of magnetic polystyrene latex via the miniemulsion polymerization technique. J Polym Sci, Part A: Polym Chem 42:4802–4808

    Article  CAS  Google Scholar 

  37. Landfester K, Mailander V (2013) Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin Drug Deliv 10:593–609

    Article  CAS  Google Scholar 

  38. Mahdavian AR, Ashjari M, Mobarakeh HS (2008) Nanocomposite particles with core-shell morphology. I. Preparation and characterization of Fe3O4–poly (butyl acrylate-styrene) particles via miniemulsion polymerization. J Appl polym Sci 110(2):1242–1249

    Article  CAS  Google Scholar 

  39. Li T, Han X, Wang Y, Wang F, Shi D (2015) Preparation of spherical caged superparamagnetic nanocomposites with completed inorganic shell via a modified miniemulsion technology. Colloid Surface 477:84–89

    Article  CAS  Google Scholar 

  40. Saadatjoo N, Hayasi M, Karimi M (2016) Fast removal of cationic dyes using pH-sensitive Fe3O4/poly(methacrylic acid) nanocomposite particles. Desalin Water Treat 57:20058–20068

    Article  CAS  Google Scholar 

  41. Charoenmark L, Polpanich D, Thiramanas R, Tangboriboonrat P (2012) Preparation of superparamagnetic polystyrene-based nanoparticles functionalized by acrylic acid. Macromol Res 20:590–596

    Article  CAS  Google Scholar 

  42. Zhang L, He R, Gu HC (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617

    Article  CAS  Google Scholar 

  43. Zeng Y, Hao R, Xing BG, Hou YL, Xu ZC (2010) One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Catal Commun 46:3920–3922

    CAS  Google Scholar 

  44. Liu SH, Lu F, Xing RM, Zhu JJ (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem Eur J 17:620–625

    Article  CAS  Google Scholar 

  45. Li W, Cui Z, Duan H, Xue Y (2016) Effect of nanoparticle size on the thermal decomposition thermodynamics in theory and experiment. Appl Phys A 122:99

    Article  Google Scholar 

  46. Liu R, Zhang T, Yang L, Zhou Z (2014) Effect of particle size on thermal decomposition of alkali metalpicrates. Thermochim Acta 583:78–85

    Article  CAS  Google Scholar 

  47. Sovizi MR, Hajimirsadeghia SS, Naderizadeh B (2009) Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater 168:1134–1139

    Article  CAS  Google Scholar 

  48. Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–210:193–198

    Article  Google Scholar 

  49. Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylase. Bioresour Technol 101:2197–2202

    Article  CAS  Google Scholar 

  50. Selvama PP, Preethi S, Basakaralingam P, Thinakaran N, Sivasamy A, Sivanesan S (2008) Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J Hazard Mater 155:39–44

    Article  Google Scholar 

  51. Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD (2010) Removal of rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies. J Chem Eng Data 55:5777–5785

    Article  CAS  Google Scholar 

  52. Khan TA, Dahiya S, Ali I (2012) Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl Clay Sci 69:58–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayasi, M., Karimi, M. Synthesis of poly(styrene-co-methacrylic acid)-coated magnetite nanoparticles as effective adsorbents for the removal of crystal violet and Rhodamine B: a comparative study. Polym. Bull. 74, 1995–2016 (2017). https://doi.org/10.1007/s00289-016-1816-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1816-y

Keywords

Navigation