Skip to main content
Log in

Ultrasonic characterization of andesite waste-reinforced composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The epoxy resin used in this study is modified with 5 wt% of polyaniline. Then electrically conductive modified epoxy resin (MER) (as matrix) and different weight amounts (10–30 wt%) of andesite waste (AW) as filler are mixed together to obtain the andesite waste-reinforced epoxy resin composites. The effects of filler amount on the electrical and ultrasonic properties of the modified epoxy resin are examined. The effects of AW amount on the ultrasonic properties of the obtained MER/AW composites are investigated by ultrasonic pulse-echo method. The conductivity of the composites is measured by a four-point probe (FPP) method, and the morphologies of the samples are investigated by scanning electron microscopy (SEM). Experimental results show that increasing the amount of AW causes a linear increase in the elastic properties. On the other hand, the same amounts of AW decrease the electrical conductivity of MER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitchell CJ, Harrison DJ, Robinson HL, Ghazireh N (2004) Minerals from Waste: recent BGS and Tarmac experience in finding uses for mine and quarry waste. Miner Eng 17(2):279–284

    Article  CAS  Google Scholar 

  2. Hammond AA (1988) Mining and quarrying wastes: a critical review. Eng Geol 25(1):17–31. doi:10.1016/0013-7952(88)90016-6

    Article  Google Scholar 

  3. Aliabdo AA, Abd Elmoaty AEM, Auda EM (2014) Re-use of waste marble dust in the production of cement and concrete. Constr Build Mater 50:28–41. doi:10.1016/j.conbuildmat.2013.09.005

    Article  Google Scholar 

  4. Wang C, Wang H, Gu G, Lin Q, Zhang L, Huang L, Zhao J (2016) Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics. Waste Manag 51:13–18

    Article  CAS  Google Scholar 

  5. Hassani A, Ganjidoust H, Maghanaki AA (2005) Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement. Waste Manag Res 23(4):322–327

    Article  CAS  Google Scholar 

  6. van Beers D, Bossilkov A, Lund C (2009) Development of large scale reuses of inorganic by-products in Australia: The case study of Kwinana, Western Australia. Resour Conserv Recycl 53(7):365–378. doi:10.1016/j.resconrec.2009.02.006

    Article  Google Scholar 

  7. Alemdag S (2014) Assessment of bearing capacity and permeability of foundation rocks at the Gumustas Waste Dam Site (NE Turkey) using empirical and numerical analysis. Arab J Geosci 8(2):1099–1110. doi:10.1007/s12517-013-1236-3

    Article  Google Scholar 

  8. Sancak E, Özkan Ş (2015) Sodium Sulphate Effect on Cement Produced with Building Stone Waste. J Mater 2015:1–12. doi:10.1155/2015/813515

    Article  Google Scholar 

  9. Uzun I, Terzi S (2012) Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Constr Build Mater 31:284–288. doi:10.1016/j.conbuildmat.2011.12.093

    Article  Google Scholar 

  10. Sariisik A, Sariisik G, Şentürk A (2011) Applications of glaze and decor on dimensioned andesites used in construction sector. Constr Build Mater 25(9):3694–3702. doi:10.1016/j.conbuildmat.2011.03.062

    Article  Google Scholar 

  11. Li N, Lee JY, Ong LH (1992) A Polyaniline and Nafion (R) composite film as a rechargeable battery. J Appl Electrochem 22:512

    Article  CAS  Google Scholar 

  12. Trinidad F, Montemayor MC, Fatas E (1991) Performance Study of Zn/Zncl2, NH4Cl Polyaniline Carbon Battery. J Electrochem Soc 138:3186

    Article  CAS  Google Scholar 

  13. De León Almazán CM, Chávez-Cinco MY, Páramo-García U, Mendoza-Martínez AM, Estrada-Moreno IA, Rivera-Armenta JL (2016) PANI/SBR composites as anticorrosive coatings for carbon steel I. Chemical, morphological and superficial characterization. Polym Bull 73(6):1595–1605

    Article  Google Scholar 

  14. Liu W, Gao G (2004) Preparation of conductive polyaniline fibers by a continuous forming-drawn processing routine. J Appl Polym Sci 93:956

    Article  CAS  Google Scholar 

  15. Raj JM, Ranganathaiah C, Kothandaraman B (2007) Correlation between mechanical properties and free volume of epoxies modified using three modifiers. Int J Plast Technol 11(1–2):805–818

    CAS  Google Scholar 

  16. Borsellino C, Calabrese L, Di Bella G (2009) Effects of powder concentration and type of resin on the performance of marble composite structures. Constr Build Mater 23(5):1915–1921

    Article  Google Scholar 

  17. Altaweel AMAM, Ranganathaiah C, Kothandaraman B, Raj JM, Chandrashekara MN (2011) Characterization of ACS modified epoxy resin composites with fly ash and cenospheres as fillers: mechanical and microstructural properties. Polym Compos 32(1):139–146

    Article  CAS  Google Scholar 

  18. Oral I, Guzel H, Ahmetli G (2013) Determining the mechanical properties of epoxy resin (DGEBA) composites by ultrasonic velocity measurement. J Appl Polym Sci 127:1667–1675

    Article  CAS  Google Scholar 

  19. Oral I (2015) Ultrasonic properties of epoxy resin/marble waste powder composites. Polym Compos 36:584

    Article  CAS  Google Scholar 

  20. Oral I, Guzel H, Ahmetli G (2011) Measuring the Young’s modulus of polystyrene-based composites by tensile test and pulse-echo method. Polym Bull 67(9):1893–1906

    Article  CAS  Google Scholar 

  21. Vu CM, Nguyen TV, Nguyen LT, Choi HJ (2016) Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics. Polym Bull 73(5):1373–1391

    Article  CAS  Google Scholar 

  22. Morel E, Bellenger V, Bocquet M, Verdu J (1989) Structure-properties relationships for densely cross-linked epoxide amine systems based on epoxide or amine mixtures. 3. Elastic properties. J Mater Sci 24(1):69–75. doi:10.1007/Bf00660934

    Article  CAS  Google Scholar 

  23. Mir IA, Kumar D (2010) Development of polyaniline/epoxy composite as a prospective solder replacement material. Int J Polym Mater 59:994

    Article  CAS  Google Scholar 

  24. Soares BG, Celestino ML, Magioli M, Moreira VX, Khastgir D (2010) Synthesis of conductive adhesives based on epoxy resin and polyaniline. DBSA using the in situ polymerization and physical mixing procedures. Synth Metals 160:1981

    Article  CAS  Google Scholar 

  25. Tsotra P, Friedrich K (2004) Thermal, mechanical, and electrical properties of epoxy resin/polyaniline-dodecylbenzenesulfonic acid blends. Synth Metals 143:237

    Article  CAS  Google Scholar 

  26. Chotard T, Gimet-Breart N, Smith A, Fargeot D, Bonnet JP, Gault C (2001) Application of ultrasonic testing to describe the hydration of calcium aluminate cement at the early age. Cem Concr Res 31(3):405–412

    Article  CAS  Google Scholar 

  27. Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38(7):981–994

    Article  Google Scholar 

  28. Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41(5):871–875

    Article  Google Scholar 

  29. Wu D, Zhang Y, Liu Y (2016) Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash. Ultrasonics 64:89–96

    Article  CAS  Google Scholar 

  30. Choi JS, Lim ST, Choi HJ, Mohanty AK, Drzal LT, Misra M, Wibowo A (2004) Preparation and characterization of plasticized cellulose acetate biocomposite with natural fiber. J Mater Sci 39(21):6631–6633

    Article  CAS  Google Scholar 

  31. Jackson NM, Schultz S, Sander P, Schopp L (2009) Beneficial use of CFB ash in pavement construction applications. Fuel 88(7):1210–1215

    Article  CAS  Google Scholar 

  32. Moini NKK, Zohuriaan-Mehr MJ, Esmaeili N (2016) Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polym Bull 73(4):1119–1133

    Article  CAS  Google Scholar 

  33. Saltan M, Findik FS (2008) Stabilization of subbase layer materials with waste pumice in flexible pavement. Build Environ 43(4):415–421

    Article  Google Scholar 

  34. Huang Y, Bird RN, Heidrich O (2007) A review of the use of recycled solid waste materials in asphalt pavements. Resour Conserv Recycl 52(1):58–73

    Article  Google Scholar 

  35. Akbulut H, Gurer C (2007) Use of aggregates produced from marble quarry waste in asphalt pavements. Build Environ 42(5):1921–1930

    Article  Google Scholar 

  36. Tapkin S (2008) The effect of polypropylene fibers on asphalt performance. Build Environ 43(6):1065–1071

    Article  Google Scholar 

  37. Modolo R, Benta A, Ferreira VM, Machado LM (2010) Pulp and paper plant wastes valorisation in bituminous mixes. Waste Manag 30(4):685–696

    Article  CAS  Google Scholar 

  38. Galperina MK, Mumladze NA (1980) Zircon-free opacified colored glazes based on andesite. Glass Ceram 37(3–4):197–199

    Article  Google Scholar 

  39. Galperina MK, Mitrokhin VS, Mumladze NA (1981) Colored glazes based on andesite. Glass Ceram 38(9–10):528–530

    Article  Google Scholar 

  40. Yilmaz S, Bayrak G, Sen S, Sen U (2006) Structural characterization of basalt-based glass-ceramic coatings. Mater Design 27(10):1092–1096

    Article  CAS  Google Scholar 

  41. Albert E, Muntean M, Ianculescu A, Miculescu F, Albert B (2009) Special Ceramic Material Based On Basaltic–Andesite for Extreme Environments. Adv Mater Res 59:39–41. doi:10.4028/www.scientific.net/AMR.59.39

    Article  CAS  Google Scholar 

  42. Gur CH, Ozturk A (2005) Determination of the influence of TiO2 on the elastic properties of a mica based glass ceramic by ultrasonic velocity measurements. J Non Cryst Solids 351:3655–3662

    Article  Google Scholar 

  43. Hellier C (2001) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill Education, Blacklick

    Google Scholar 

  44. Nanekar PP, Shah BK (2004) Characterization of material properties by ultrasonics. BARC Newsl 249:25

    CAS  Google Scholar 

  45. Perepechko II (1975) Acoustic methods of investigating polymers (trans: Leib G). Mir Publishers, Moscow

  46. Vary A (1978) Quantitative ultrasonic evaluation of mechanical properties of engineering materials. National Bureau of Standards and American Society for Nondestructive Testing. In: Proceedings of the first international symposium on ultrasonic materials characterization, Gaithersburg, Md, 7–9 June, p 37

  47. Ali MG, Elsayed NZ, Eid AM (2013) Ultrasonic Attenuation and Velocity in Steel Standard Reference Blocks. RJAV X 1:33–38

    Google Scholar 

  48. Popovics S, Rose JL, Popovics JS (1990) The behaviour of ultrasonic pulses in concrete. Cem Concr Res 20(2):259–270. doi:10.1016/0008-8846(90)90079-D

    Article  CAS  Google Scholar 

  49. Vasconcelos G, Lourenco PB, Alves CAS, Pamplona J (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48(5):453–466. doi:10.1016/j.ultras.2008.03.008

    Article  CAS  Google Scholar 

  50. Aggelis DG, Polyzos D, Philippidis TP (2005) Wave dispersion and attenuation in fresh mortar: theoretical predictions vs. experimental results. J Mech Phys Solids 53(4):857–883. doi:10.1016/j.jmps.2004.11.005

    Article  CAS  Google Scholar 

  51. Mishra SR, Kumar S, Park A, Rho J, Losby J, Hoffmeister BK (2003) Ultrasonic characterization of the curing process of PCC fly ash–cement composites. Mater Charact 50(4–5):317–323. doi:10.1016/S1044-5803(03)00127-X

    Article  CAS  Google Scholar 

  52. Philippidis TP, Aggelis DG (2005) Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43(7):584–595. doi:10.1016/j.ultras.2004.12.001

    Article  CAS  Google Scholar 

  53. Raman SNSM, Zain MFM (2007) Non-destructive evaluation of flowing concretes incorporating quarry waste. Asian J Civ Eng Build Hous 8(6):597–614

    Google Scholar 

  54. Feio AO, Lourenço PB, Machado JS (2007) Non-destructive evaluation of the mechanical behavior of chestnut wood in tension and compression parallel to grain. Int J Archit Herit 1(3):272–292. doi:10.1080/15583050701300475

    Article  Google Scholar 

  55. Lourenço PB, Feio AO, Machado JS (2007) Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. Constr Build Mater 21(8):1617–1627. doi:10.1016/j.conbuildmat.2006.07.011

    Article  Google Scholar 

  56. Anson LW, Chivers RC (1993) Ultrasonic velocity in suspensions of solids in solids–A comparison of theory and experiment. J Phys D Appl Phys 26(10):1566–1575. doi:10.1088/0022-3727/26/10/005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) within the International Postdoctoral Research Scholarship Programme (2219/2014-1/1059B191400765) and Konya Necmettin Erbakan University. The author is grateful for the support provided by TUBITAK and Konya Necmettin Erbakan University, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Oral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oral, I., Soydal, U. & Bentahar, M. Ultrasonic characterization of andesite waste-reinforced composites. Polym. Bull. 74, 1899–1914 (2017). https://doi.org/10.1007/s00289-016-1811-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1811-3

Keywords

Navigation