Skip to main content
Log in

Development of cyclophosphazene and rice husk ash incorporated epoxy composites for high performance applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An amine-terminated cyclophosphazene and 3-aminopropyltrimethoxysilane-functionalized rice husk ash incorporated halogen-free flame-retardant epoxy composites (ATCP/FRHA/Ep) were developed and their thermal, dielectric, hydrophobic and flame-retardant properties were analysed. The cone calorimeter and contact angle results confirm that the ATCP and FRHA materials impart good flame-retardant and water resistance properties to the resultant epoxy composites. A significant improvement in the flame-retardant, glass transition temperature, char yield and dielectric properties was noticed, due to the synergetic effects imparted from the unique combination of phosphorous and nitrogen in the phosphazene ring as well as silica present in the rice husk ash. Obviously, this ATCP/FRHA/Ep flame-retardant system paves a new possibility for high performance non-halogen flame-retardant polymeric materials. Hence, they have become potential candidates for fire-resistant applications in electronic and microelectronics as a sustainable non-flammable polymeric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. May CA (1988) Epoxy resins chemistry and technology. Marcel Dekker, New York

    Google Scholar 

  2. Lee H, Neville K (1972) Handbook of epoxy resin. McGraw-Hill, New York

    Google Scholar 

  3. Lubin G (1982) Handbook of composites. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  4. Liaw DJ (2000) Synthesis of polyphosphates by the polyaddition of bisphenol-S diglycidyl ether and aryl phosphorodichloridates. J Polym Sci Part A Polym Chem 35:2365–2369

    Article  Google Scholar 

  5. Park SJ, Jin FL, Lee JR (2004) Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng, A 374:109–114

    Article  Google Scholar 

  6. Krishnamurthy SS, Sau AC, Woods M (1978) Advances in inorganic chemistry and radiochemistry. Academic Press, New York, p 41

    Google Scholar 

  7. Horrocks AR, Zhang J, Hall ME (1994) Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation. Polym Int 33:303

    Article  CAS  Google Scholar 

  8. Wu CS, Liu YL, Hsu KY (2003) Maleimide-epoxy resins: preparation, thermal properties, and flame retardance. Polymer 44:565–573

    Article  CAS  Google Scholar 

  9. Wang YZ, Chen XT, Tang XD, Du XH (2003) A new approach for the simultaneous improvement of fire retardancy, tensile strength and melt dripping of poly(ethylene terephthalate). J Mater Chem 13:1248–1249

    Article  CAS  Google Scholar 

  10. Kashiwagi TJ, Gilman W, Butler KM, Harris RH, Shields JR, Sano A (2000) Flame retardant mechanism of silica gel/silica. Fire Mater 24:277–289

    Article  CAS  Google Scholar 

  11. Kashiwagi T, Shields JR, Harris RH, Davis RD (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci 87:1541–1553

    Article  CAS  Google Scholar 

  12. Kashiwagi T, Morgan AB, Antonucci JM, Vanlandingham M, Harris RH, Awad WH (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposites. J Appl Polym Sci 89:2072–2078

    Article  CAS  Google Scholar 

  13. Chang SJ, Chang FC (1998) Characterizations for blends of phosphorus-containing copolyester with poly(ethylene terephthalate). Polym Eng Sci 38:1471–1481

    Article  CAS  Google Scholar 

  14. Mikroyannidis JA, Kourtides DA (1984) Curing of epoxy resins with 1-[di(2-chloroethoxyphosphinyl) methyl]-2,4-and -2,6-diaminobenzene. J Appl Polym Sci 29:197–209

    Article  CAS  Google Scholar 

  15. Wang CS, Liu YL, Hsu KY (2002) Maleimide-epoxy resins: preparation, thermal properties, and flame retardance. Polymer 44:565–573

    Google Scholar 

  16. Banks M, Ebdon JR, Johnson M (1993) The flame-retardant effect of diethyl vinyl phosphonate in copolymers with styrene, methyl methacrylate, acrylonitrile and acrylamide. Polymer 35:3470–3473

    Article  Google Scholar 

  17. Horrocks AR, Zhang J, Hall ME (1994) Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation. Polym Int 33:303–314

    Article  CAS  Google Scholar 

  18. Han Y, Xu Y, Liu Y, Wang Q, Zhang Z, Wang Z (2013) An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyamide 6 with high performance. J Mater Chem A 1:10228–10233

    Article  CAS  Google Scholar 

  19. Chen L, Wang YZ (2010) A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol 21:1–26

    Article  Google Scholar 

  20. Qiang L, Huang JQ, Chen MJ, Zhao J, Tan Y, Chen L, Wang YZ (2013) An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind Eng Chem Res 52:9397–9404

    Article  Google Scholar 

  21. Cyriac A, Lee SH, Vargheses JK, Jeon JY, Kim SJ, Lee BY (2011) Preparation of flame-retarding poly(propylene carbonate). Green Chem 13:3469–3475

    Article  CAS  Google Scholar 

  22. Liu YL, Hsiue GH, Lee RH, Chiu YS (1997) Phosphorus-containing epoxy for flame retardant. III: using phosphorylated diamines as curing agents. J Appl Polym Sci 63:895–901

    Article  CAS  Google Scholar 

  23. Gao F, Tong L, Fang Z (2006) Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stab 91:1295–1299

    Article  CAS  Google Scholar 

  24. Sun S, He Y, Wang X, Wu D (2010) Flammability characteristics and performance of halogen-free flame-retarded polyoxymethylene based on phosphorus–nitrogen synergistic effects. J Appl Polym Sci 118:611–622

    Article  CAS  Google Scholar 

  25. Ding J, Liang H, Shi W, Shen X (2005) Photopolymerization and properties of UV-curable flame-retardant resins with hexaacrylated cyclophosphazene compared with its cured powder. J Appl Polym Sci 97:1776–1782

    Article  CAS  Google Scholar 

  26. Besli S, Coles SJ, Davies DB, Eaton RJ, Kilic A, Shaw RA (2006) Competitive formation of spiro and ansa derivatives in the reactions of tetrafluorobutane-1,4-diol with hexachlorocyclotriphosphazene: a comparison with butane-1,4-diol. Polyhedron 25:963–974

    Article  CAS  Google Scholar 

  27. Chandrasekhar V, Krishnan V (2002) Advances in the chemistry of chlorocyclophospazenes. Adv Inorg Chem 53:159–211

    Article  CAS  Google Scholar 

  28. Allen CW (1991) Regio and stereochemical control in substitution reactions of cyclophosphazenes. Chem Rev 91:119–135

    Article  CAS  Google Scholar 

  29. Allcock H, Austin PE (1981) Schiff base coupling of cyclic and high-polymeric phosphazenes to aldehydes and amines: chemotherapeutic models. Macromolecules 14:1616–1622

    Article  CAS  Google Scholar 

  30. Chen-Yang YM, Cheng SJ, Tsai BD (1991) Preparation of the partially substituted (phenoxy)chlorocyclotriphosphazenes by phase-transfer catalysis. Ind Eng Chem Res 30:1314–1319

    Article  CAS  Google Scholar 

  31. Yongwei B, Xiaodong W, Dezhen W (2012) Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics. Ind Eng Chem Res 51:15064–15074

    Article  Google Scholar 

  32. Shan L, Hongqiang Y, Zhengping F, Zhenghong G, Hao W (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Adv 4:18652–18659

    Article  Google Scholar 

  33. Xiaodong Q, Bin Y, Chenlu B, Lei S, Bibo W, Weiyi X, Yuan H, Richard K, Yuen K (2013) Silicon nanoparticle decorated graphene composites: preparation and their reinforcement on the fire safety and mechanical properties of polyurea. J Mater Chem A 1:9827–9836

    Article  Google Scholar 

  34. Qiang Z, Baoqing Z, Hui Q, Yam RCM, Yen RK, Yuen K, Robert KYL (2009) Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Compos Sci Technol 69:2675–2681

    Article  Google Scholar 

  35. Ya-nan M, Guozheng L, Aijuan G, Feipeng Z, Li Y (2013) Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Ind Eng Chem Res 52:3342–3353

    Article  Google Scholar 

  36. Cabanelas JC, Serrano B, Gonzalez MG, Baselga J (2005) Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets. Polymer 46:6633–6639

    Article  CAS  Google Scholar 

  37. Govindaraj B, Sundararajan P, Sarojadevi M (2012) Synthesis and characterization of polyimide/polyhedral oligomeric silsesquioxane nanocomposites containing quinolyl moiety. Polym Int 61:1344–1352

    Article  CAS  Google Scholar 

  38. Haibo F, Rongjie Y (2013) Flame-retardant polyimide cross-linked with polyhedral oligomeric octa(aminophenyl)silsesquioxane. Ind Eng Chem Res 52:2493–2500

    Article  Google Scholar 

  39. Juhua Y, Guozheng L, Aijuan G, Zhiyong Z, Jipeng H, Li Y (2013) Novel phosphorus-containing hyperbranched polysiloxane and its high performance flame retardant cyanate ester resins. Polym Degrad Stab 98:597–608

    Article  Google Scholar 

  40. Dongxian Z, Aijuan G, Guozheng L, Jiang-tao H, Lei C, Li Y (2011) Flame retardancy and flame retarding mechanism of high performance hyperbranched polysiloxane modified bismaleimide/cyanate ester resin. Polym Degrad Stab 96:505–514

    Article  Google Scholar 

  41. Dongxian Z, Aijuan G, Guozheng L, Jiang-tao H, Li Y, Xiangxiu C (2011) Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance. J Mater Chem 21:6584–6594

    Article  Google Scholar 

  42. Bin S, Guozheng L, Aijuan G, Li Y (2013) High performance miscible polyetherimide/bismaleimide resins with simultaneously improved integrated properties based on a novel hyperbranched polysiloxane having a high degree of branching. Ind Eng Chem Res 52:5054–5065

    Article  Google Scholar 

  43. Takashi K, Akira Y, Kumi H, Kazuhiro F, Takeshi Y, Norio T (2013) Immobilization of flame-retardant onto silica nanoparticle surface and properties of epoxy resin filled with the flame-retardant-immobilized silica (2). React Funct Polym 73:613–618

    Article  Google Scholar 

  44. Rachasit J, Nitinat S, Kasama J (2011) Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos B Eng 56:249–253

    Google Scholar 

  45. Junbo W, Guojian W (2014) Influences of montmorillonite on fire protection, water and corrosion resistance of waterborne intumescent fire retardant coating for steel structure. Surf Coat Technol 239:177–184

    Article  Google Scholar 

  46. Xi Z, Qingliang H, Hongbo G, Suying W, Zhanhu G (2013) Polyaniline stabilized barium titanate nanoparticles reinforced epoxy nanocomposites with high dielectric permittivity and reduced flammability. J Mater Chem C 1:2886–2899

    Google Scholar 

  47. Shieh JY, Wang CS (2002) Effect of the organophosphate structure on the physical and flame-retardant properties of an epoxy resin. J Polym Sci Part A Polym Chem 40:369–378

    Article  CAS  Google Scholar 

  48. Gao LP, Wang DY, Wang YZ, Wang JS, Yang B (2008) A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym Degrad Stab 93:1308–1315

    Article  CAS  Google Scholar 

  49. Schartel B, Braun U, Artner J, Ciesielski M, Altstads V (2008) Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener. Eur Polym J 44:704–715

    Article  CAS  Google Scholar 

  50. Li Q, Jiang P, Wei P (2006) Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. Polym Eng Sci 46:344–350

    Article  CAS  Google Scholar 

  51. Baney RH, Ltoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  52. Abe YO, Gunji T (2004) Oligo and polysiloxanes. Prog Polym Sci 29:149–182

    Article  CAS  Google Scholar 

  53. Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237

    Article  CAS  Google Scholar 

  54. Apivhat I, Eakachai P (2010) Humic acids removal from water by aminopropyl functionalized rice husk ash. J Hazard Mater 184:775–781

    Article  Google Scholar 

  55. Krishnadevi K, Nirmala Grace A, Alagar M, Selvaraj V (2014) Development of hexa(aminophenyl)cyclotriphosphazene-modified cyanate ester composites for high-temperature applications. High Perform Polym 26:1–8

    Article  Google Scholar 

  56. Liu C, Chen T, Yuan CH, Song CF, Chang Y, Chen GR, Xu YT, Dai LZ (2016) Modification of epoxy resin through the self assembly of a surfactant-like multi-element flame retardant. J Mater Chem A 4:3462–3470

    Article  CAS  Google Scholar 

  57. Chen Xiangxiu, Ye Juhua, Yuan Li, Liang Guozheng, Aijuan Gu (2014) Multi-functional ladderlike polysiloxane: synthesis, characterization and its high performance flame retarding bismaleimide resins with simultaneously improved thermal resistance, dimensional stability and dielectric properties. J Mater Chem A 2:7491–7501

    Article  CAS  Google Scholar 

  58. Labana SS (1977) Chemistry and properties of crosslinked polymers. Academic press inc (London) Ltd., A Subsidiary of Harcourt brace Jovanovich publisher, New York

    Google Scholar 

  59. Flory PJ, Rehner J (1943) Statistical theory of chain configuration and physical properties of high polymers. Ann N Y Acad Sci 44:419–429

    Article  CAS  Google Scholar 

  60. Hirschl Ch, Biebl-Rydlo M, DeBiasio M, Mühleisen W, Neumaier L, Scherf W, Oreski G, Eder G, Chernev B, Schwab W, Kraft M (2013) Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study. Sol Energy Mater Sol Cells 116:203–218

    Article  CAS  Google Scholar 

  61. Proctor A, Clark PK, Pareker CA (1995) Rice hull ash adsorbent performance under commercial soy oil bleaching conditions. J Am Oil Chem Soc 72:459–462

    Article  CAS  Google Scholar 

  62. Rozainee M, Ngo SP, Slem SS, Tan KG, Ariffin M, Zainura ZN (2008) Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash. Bioresour Technol 99:703–713

    Article  CAS  Google Scholar 

  63. Fan J, Hu X, Yue CY (2003) Dielectric properties of self-catalytic interpenetrating polymer network based on modified bismaleimide and cyanate ester resins. J Polym Sci B Polym Phys 41:1123–1134

    Article  CAS  Google Scholar 

  64. Alizadeh T (2012) Application of electrochemical impedance spectroscopy and conventional rebinding experiments for the investigation of recognition characteristic of bulky and nano-sized imprinted polymers. Mater Chem Phys 135:1012–1023

    Article  CAS  Google Scholar 

  65. Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 56:3981–3987

    Article  CAS  Google Scholar 

  66. Tada Yuji, Moriya Narimasa, Kanazawa Makoto, Asanuma Kota, Suzuki Atsuko, Koyama Shigeto (2012) Preparation and properties of novel oligo(phenylene oxide)-branched cyclophosphazenes. Polym Chem 3:2815–2824

    Article  CAS  Google Scholar 

  67. Lin CH, Tsai YJ, Shih YS, Chang HC (2014) Catalyst-free synthesis of phosphonated poly(2,6-dimethyl-1,4-phenylene oxide) with high-Tg and low-dielectric characteristic. Polym Degrad Stab 99:105–110

    Article  CAS  Google Scholar 

  68. Devaraju S, Vengatesan MR, Selvi M, Ashok Kumar A, Hamerton I, Go JS, Alagar M (2013) Low surface free energy cyanate ester–silica hybrid (CE–SiO2) nanomaterials for low k dielectric applications. RSC Adv 3:12915–12921

    Article  CAS  Google Scholar 

  69. Sponton M, Mercado LA, Ronda JC, Galia M, Cadiz V (2008) Preparation, thermal properties and flame retardancy of phosphorus- and silicon-containing epoxy resins. Polym Degad Stabil 93:2025–2031

    Article  CAS  Google Scholar 

  70. Quittmann U, Lecamp L, Khatib WE, Youssef B, Bunel C (2001) Synthesis of a new phosphonated dimethacrylate: photocuring kinetics in homo- and copolymerization, determination of thermal and flame-retardant properties. Macromol Chem Phys 202:628–635

    Article  CAS  Google Scholar 

  71. Ying-Ling L, Wen-Lung W, Keh-Ying H, Wen-Hsuan H (2004) Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta 412:139–147

    Article  Google Scholar 

  72. Nelson GL (2000) The changing nature of fire retardancy of polymers in grant A F and Wilkie C. A, Fire retardancy of polymeric materials. Marcel Dekker, New York, pp 1–26

  73. Gao F, Tong L, Fang Z (2006) Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stab 91:1295–1299

    Article  CAS  Google Scholar 

  74. Wang X, Li Y, Liao W, Gu J, Li D (2008) A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol 19:1055–1061

    Article  CAS  Google Scholar 

  75. Wang DY, Liu Y, Wang YZ, Articles CP, Hull TR, Price D (2007) Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polym Degrad Stab 92:1592–1598

    Article  CAS  Google Scholar 

  76. Troitsch J (1990) International plastic flammability handbook, 2nd edn. Hanser, Munich

    Google Scholar 

  77. Mercado LA, Reina JA, Galia M (2006) Flame retardant epoxy resins based on diglycidyloxymethylphenylsilane. J Polym Sci Polym Chem 44:5580–5587

    Article  CAS  Google Scholar 

  78. Hshieh FY (1998) Shielding effects of silica-ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers. Fire Mater 22:69–76

    Article  CAS  Google Scholar 

  79. Uhla FM, Yaoa Q, Nakajimac H, Manias E, Wilkie CA (2005) Expandable graphite/polyamide-6 nanocomposites. Polym Degad Stab 89:70–84

    Article  Google Scholar 

  80. Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928–933

    Article  CAS  Google Scholar 

  81. Islam MM, Kabir H, Gafur MA, Bhuiyan MMR, Kabir MA, Qadir MR, Ahmed F (2015) Study on physio-mechanical properties of rice husk ash polyester resin composite. Int Lett Chem Phys Astron 2299–3843, 53:95–105

Download references

Acknowledgments

The authors would like to thank DST/Nanomission, New Delhi, India, for financial support to carry out this work and the establishment of Nanotech Research Lab through Grant No. SR/NM/NS-05/2011(G). The authors thank Mr. Ashok, Research Scholar, Polymer Engineering and Colloids Science Lab, IIT Madras, Miss. Priyanka Pandey, Research Scholar, CIPET and Mr.Ezhumalai, Technical assistant, CIF, Pondicherry University, for their support in carrying out the characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaithilingam Selvaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnadevi, K., Selvaraj, V. Development of cyclophosphazene and rice husk ash incorporated epoxy composites for high performance applications. Polym. Bull. 74, 1791–1815 (2017). https://doi.org/10.1007/s00289-016-1805-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1805-1

Keywords

Navigation