Skip to main content
Log in

Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapors for the removal of Rhodamine B dye

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, a chitosan/polyacrylonitrile semi-IPN hydrogel system was developed. To do so various blends of chitosan/polyacrylonitrile were prepared. The miscibility of the polymers, crosslinking of chitosan via glutaraldehyde vapors to produce semi-IPN and microstructures of the hydrogels were determined with DSC, FT-IR and FE-SEM, respectively. The DSC thermograms of hydrogels blends showed a single Tg (at 179–152 °C for Gel1–Gel4), which suggested good miscibility between the two polymers. For semi-IPN (Gel7) the Tg appeared at slightly lower temperature (128 °C), which suggested reduced intermolecular interactions between the two polymers due to the crosslinking of the chitosan. FT-IR showed no change in the characteristic bands positions of the two polymers for hydrogel blends(Gel1–Gel4) and a characteristic doublet at 1563 cm−1 and 1630 cm−1 (for the crosslinking of chitosan with glutaraldehyde) for semi-IPN hydrogel (Gel7). The FE-SEM micrographs showed homogenous (with no phase separation) surface and cross section morphologies for the blends hydrogels (Gel1–Gel4) and semi-IPN hydrogel (Gel7). The aqueous behaviors of the blend hydrogel (Gel1) and semi-IPNs (Gel5–Gel7) were investigated with the reported methods. The % degree of swelling was observed to decrease whereas stability increased as the crosslinking time was increased. The semi-IPN hydrogel (Gel7) showed improved stability and fair swelling. The potential of blend hydrogel (Gel1) and semi-IPNs hydrogel (Gel7) as adsorbents for the adsorption of Rhodamine B dye was studied. Rhodamine B dye showed significant adsorption affinity for semi-IPN hydrogel (Gel7). The data fitted best to pseudo-second-order kinetic and Langmuir isotherm. Intraparticle diffusion model confirmed that diffusion is not the only rate-limiting step, some degree of boundary layer control may be also operating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Po R (1994) Water-absorbent polymers: a patent survey. J Macromol Sci Rev Macromol Chem Phys C34:607–662

    Article  CAS  Google Scholar 

  2. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, New York

    Google Scholar 

  3. Mah E, Ghosh R (2013) Thermo-responsive hydrogels for stimuli-responsive membranes. Processes 1:238–262

    Article  CAS  Google Scholar 

  4. Yoshida R, Okano T (2010) Stimuli-responsive hydrogels and their application to functional materials. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 19–43

    Chapter  Google Scholar 

  5. Zhao Y, Kang J, Tan T (2006) Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 47:7702–7710

    Article  CAS  Google Scholar 

  6. Reddy TT, Takahara A (2009) Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer 50:3537–3546

    Article  CAS  Google Scholar 

  7. Zhu H-Y, Fu Y-Q, Jiang R, Yao J, Xiao L, Zeng G-M (2012) Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30

    Article  CAS  Google Scholar 

  8. Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7:1634–1843

    Article  CAS  Google Scholar 

  9. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M (2012) A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8:1022–1036

    Article  CAS  Google Scholar 

  10. Tang Y-F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67:491–499

    Article  CAS  Google Scholar 

  11. Abdeen Z, Mohammad SG, Mahmoudc (2104) Adsorption of Mn(II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environ Nanotechnol Monitor Manag. doi:10.1016/j.enmm.2014.10.001

    Google Scholar 

  12. Liu Y, Yua S, Wu H, Li Y, Wang S, Tian Z, Jianggh Z (2104) High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2separation. J Membr Sci 469:198–208

    Article  Google Scholar 

  13. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  14. Zhao S, Zhou F, Li L, Cao M, Zuo D, Liu H (2012) Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Composites: Part B Eng 43:1570–1578

    Article  CAS  Google Scholar 

  15. Dash M, Ferri M, Chiellini F (2012) Synthesis and characterization of semi-interpenetrating polymer network hydrogel based on chitosan and poly(methacryloylglycylglycine). Mater Chem Phys 135:1070–1076

    Article  CAS  Google Scholar 

  16. Wang N, Han Y, Liu Y, BaiT Gao H, Zhang P, Wang W, Liu W (2012) High-strength hydrogel as a reusable adsorbent of copper ions. J Hazard Mater 213–214:258–264

    Article  Google Scholar 

  17. Jeon YS, Lei J, Kim J-H (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731

    Article  CAS  Google Scholar 

  18. Aberkane-Mechebbek L, Larbi-Youcef SF, Mahlous M (2009) Adsorption of dyes and metal ions by acrylamide-co-acrylic acid hydrogels synthesized by gamma radiation. Mater Sci Forum 609:255–259

    Article  CAS  Google Scholar 

  19. Al-Mubaddel FS, Aijaz MO, Haider S, Haider A, Almasry WA, Al-Fatesh AS (2105) Synthesis of chitosan based semi-IPN hydrogels using epichlorohydrine as crosslinker to study the adsorption kinetics of Rhodamine B. Desalin Water Treat. doi:10.1080/19443994.2015.1085915

    Google Scholar 

  20. Milosavljević NB, Ristić MĐ, Perić-Grujić AA, Filipović JM, Štrbac SB, RakočevićZ L, Kalagasidis Krušić MT (2010) Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. Chem Eng J 165:554–562

    Article  Google Scholar 

  21. Haider S, Park SY, Lee SH (2008) Preparation, swelling and electro-mechano-chemical behaviors of a gelatin-chitosan blend membrane. Soft Matter 4:485–492

    Article  CAS  Google Scholar 

  22. Haider S, Binagag FF, Haider A, Mahmood A, Al-Masry WA, Alhoshan M, Khan SU-D (2015) Fabrication of the diethylenetriamine grafted polyacrylonitrile electrospun nanofibers membrane for the aqueous removal of cationic dyes. Sci Adv Mater 7:309–318

    Article  CAS  Google Scholar 

  23. Raghunadh Acharyulu S, Gomathi T, Sudha PN (2013) Physico-chemical characterization of cross linked chitosan-polyacrylonitrile polymer blends. Der Pharm Lett 5:354–363

    Google Scholar 

  24. EL-Hefian EA, Elgannoudi ES, Mainal A, Yahaya AH (2010) Characterization of chitosan in acetic acid: Rheological and thermal studies. Turk J Chem 34:47–56

    CAS  Google Scholar 

  25. Minagawa M, Kanoh H, Tanno S, Nishimoto Y (2002) Glass-transition temperature (T g) of free-radically prepared polyacrylonitrile by inverse gas chromatography, 1. A study on T g of atactic monodisperse polystyrenes. Macromol Chem Phys 203:2475–2480

    Article  CAS  Google Scholar 

  26. Brown SB (2003) Reactive compatibilization of polymer blends. In: Utracki LA (ed) Polymer blends handbook. Springer, Netherlands, pp 339–415

    Chapter  Google Scholar 

  27. Zheng K, Zhang J, Cheng (2013) Morphology, structure, miscibility, and properties of wholly soy-based semi-interpenetrating polymer networks from soy-oil-polyol-based polyurethane and modified soy protein isolate. J Ind Eng Chem Res 52:14335–14341

    Article  CAS  Google Scholar 

  28. Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056

    Article  CAS  Google Scholar 

  29. Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    Article  CAS  Google Scholar 

  30. Kim SJ, Shin SR, Lee YM, Kim SI (2003) Swelling characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer network hydrogels. J Appl Polym Sci 87:2011–2015

    Article  CAS  Google Scholar 

  31. Korobeinyk AV, Raymond LDW, Mikhalovsky SV (2012) High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonized monolith. Eur Polym J 48:97–104

    Article  CAS  Google Scholar 

  32. Haider S, Al-Zeghayer Y, Al-Masry WA, Ali FAA (2012) Fabrication of chitosan nanofibers membrane with improved stability and britility. Adv Sci Lett 17:217–223

    Article  CAS  Google Scholar 

  33. Bourara H, Hadjout S, Benabdelghani Z, Etxeberria A (2014) Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers 6:2752–2763

    Article  CAS  Google Scholar 

  34. Goycoolea FM, Heras A, Aranaz I, Galed G, Valle MEF, Monal WA (2003) Effect of chemical crosslinking on the swelling and shrinking properties of thermal and pH-responsive chitosan hydrogels. Macromol Biosci 3:612–619

    Article  CAS  Google Scholar 

  35. Fierro V, Torné-Fernandez V, Montané D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor Mesopor Mater 111:276–284

    Article  CAS  Google Scholar 

  36. Le Roux JD, Bryson AW, Young BO (1991) A comparison of several kinetic models for the adsorption of gold cyanide onto activated carbon. J S Afr Inst Min Metal 91:95–103

    Google Scholar 

  37. Weber WJ, Morris JCJ (1963) Kinetics of adsorption of carbon from solution. Sanit Eng Div Am Soc Civ Eng 89:31–59

    Google Scholar 

  38. Periasamy K, Namasivayam C (1994) Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: adsorption rates and equilibrium studies. Ind Eng Chem Res 33:317–320

    Article  CAS  Google Scholar 

  39. Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152:339–346

    Article  CAS  Google Scholar 

  40. Randhawa NS, DAS NN, Jana RK (2014) Adsorptive remediation of Cu(II) and Cd(II) Contaminated water using manganese nodule leaching residue. Desalin water treat 52:4197–4211

    Article  CAS  Google Scholar 

  41. Pirillo S, Pedroni V, Rueda E, María Ferreira L (2009) Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents. A comparative study. Quim Nova 32:1239–1244

    Article  CAS  Google Scholar 

  42. Sarkar K, Debnath M, Kundu PP (2012) Recyclable crosslinked o-carboxymethyl chitosan for removal of cationic dye from aqueous solutions. Hydrol Current Res 3:1–9

    Google Scholar 

  43. McGee H (2007) On food and cooking: the science and lore of the kitchen, Simon and Schuter Publisher, New York, p 814

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research (DSR) at King Saud University for its funding of this research through the Research Group no RG-1437-029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mubaddel, F.S., Haider, S., Aijaz, M.O. et al. Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapors for the removal of Rhodamine B dye. Polym. Bull. 74, 1535–1551 (2017). https://doi.org/10.1007/s00289-016-1788-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1788-y

Keywords

Navigation